【WebGPU学习杂记】数学基础拾遗(2)变换矩阵中的齐次坐标推导与几何理解

今天打算开始 3D 数学基础的复习,本文假设你了解以下概念:一次多项式、矩阵、向量 ,基于以上拓展的概念 归一化、2~3阶矩阵的几何意义

几何意义结论

  • 齐次坐标是对三维的人工的特定的 升维,它是一个工具 而已。图形学中常用来作为变换矩阵(平移、斜切、旋转、缩放)中的平移 。因为平移 是一个仿射变换(另外三项人家不管怎么变都没有改变原点O(0,0)原点O(0, 0)原点O(0,0)的位置)。直接在三维中不好求解,升维后非常 "便于计算"
  • 通常假设经过变换矩阵 后的点为 (x′,y′,z′,1)(x',y',z',1)(x′,y′,z′,1),也就是固定维度w=1w = 1w=1 的三维空间。类比理解三维空间中固定其中一个维度的数值,其意义就是一个平面,例如固定ZZZ后就能得到无数的点(x,y,z)→(x,y)(x,y,z)\rightarrow(x,y)(x,y,z)→(x,y)构成的平面OXY平面OXY平面OXY,而这个动作叫 "投影" ------ 高维度向低维度的投影。我们不必关心高维如何变化什么意义,只需要知道它可以求得我们渴求的变化结果 (x′,y′,z′)(x',y',z')(x′,y′,z′),至于什么 "投影" 概念一边凉快儿去!

(i⃗,j⃗,k⃗,l⃗)=[i1j1k1Δxi2j2k2Δyi3j3k3Δzi4j4k41]\begin{align*} \begin{pmatrix} \vec{i}, \vec{j}, \vec{k}, \vec{l} \end{pmatrix} &= \begin{bmatrix} i_1 & j_1 & k_1 & \Delta x \\ i_2 & j_2 & k_2 & \Delta y \\ i_3 & j_3 & k_3 & \Delta z \\ i_4 & j_4 & k_4 & 1 \\ \end{bmatrix} \end{align*} (i ,j ,k ,l )= i1i2i3i4j1j2j3j4k1k2k3k4ΔxΔyΔz1

多项式

  • 多元一次方程组(一次多项式)
  • 多项式拓展(w∈Rw \in \Rw∈R)变量,几何意义类比 二维平面、三维立体 相当于**"空间维度升了一维"**,因为我们主动添加了 维度(w)维度(w)维度(w), 即使什么都不考虑吧,那你让它等于几都可以呀,因为你甩出了魔法🪄 0x+0y+0z+1w=R0x + 0y + 0z + 1w = \R0x+0y+0z+1w=R, 然后令(w=1w = 1w=1)这个式子写作 0x+0y+0z+1×(w为1)=10x + 0y + 0z + 1\times(w 为 1) = 10x+0y+0z+1×(w为1)=1

矩阵

😓草稿,很多错误例如(多项式一元方程组) 应为 多元一次方程组---多项式

忽略 页面顶部的"行列式",瞎写的草稿,作者本人已经 6年 没碰线性代数了, 早就忘了什么乱七八糟的概念。只是记得一些 形式化的东西和定义 , 例如 等号两边加同样的东西,等号仍然成立。

相关推荐
知识分享小能手28 分钟前
React学习教程,从入门到精通, React 属性(Props)语法知识点与案例详解(14)
前端·javascript·vue.js·学习·react.js·vue·react
阿巴Jun3 小时前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
茯苓gao3 小时前
STM32G4 速度环开环,电流环闭环 IF模式建模
笔记·stm32·单片机·嵌入式硬件·学习
是誰萆微了承諾3 小时前
【golang学习笔记 gin 】1.2 redis 的使用
笔记·学习·golang
DKPT4 小时前
Java内存区域与内存溢出
java·开发语言·jvm·笔记·学习
aaaweiaaaaaa4 小时前
HTML和CSS学习
前端·css·学习·html
看海天一色听风起雨落5 小时前
Python学习之装饰器
开发语言·python·学习
speop6 小时前
llm的一点学习笔记
笔记·学习
非凡ghost6 小时前
FxSound:提升音频体验,让音乐更动听
前端·学习·音视频·生活·软件需求
ue星空7 小时前
月2期学习笔记
学习·游戏·ue5