KMeans实战——聚类和轮廓系数评估啤酒数据集

原理:

在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(Silhouette Score)来评估聚类结果的质量。

1. 数据准备

首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一个啤酒数据集,包含啤酒的热量(calories)、钠含量(sodium)、酒精含量(alcohol)和成本(cost)等特征。

python 复制代码
import pandas as pd
from sklearn.cluster import KMeans
from sklearn import metrics
import matplotlib.pyplot as plt

# 加载数据集
beer = pd.read_table('data.txt', sep=' ', encoding='utf-8', engine='python')

# 选择特征
X = beer[['calories', 'sodium', 'alcohol', 'cost']]

2. 轮廓系数简介

轮廓系数是一种用于评估聚类质量的指标,其值介于-1和1之间。轮廓系数越接近1,表示聚类结果越好;越接近-1,则表示聚类结果可能存在问题。轮廓系数的计算公式如下:

其中:

3. 计算不同簇数的轮廓系数

为了找到最佳的簇数,我们可以尝试不同的簇数,并计算每个簇数对应的轮廓系数。代码如下:

python 复制代码
scores = []
for k in range(2, 10):
    labels = KMeans(n_clusters=k).fit(X).labels_  # 聚类
    score = metrics.silhouette_score(X, labels)  # 计算轮廓系数
    scores.append(score)

print(scores)

4. 绘制轮廓系数随簇数变化的曲线

为了更直观地观察轮廓系数随簇数的变化,我们可以绘制轮廓系数曲线:

python 复制代码
plt.plot(list(range(2, 10)), scores)
plt.xlabel('Number of Clusters')
plt.ylabel('Silhouette Score')
plt.show()

通过观察曲线,我们可以选择一个轮廓系数较高的簇数作为最终的聚类数。

5. 进行聚类并评估结果

假设我们选择簇数为2,进行聚类并评估结果:

python 复制代码
# 聚类
km = KMeans(n_clusters=2).fit(X)
beer['cluster'] = km.labels_

# 计算轮廓系数
score = metrics.silhouette_score(X, beer.cluster)
print(score)

6、运行结果

总结

本文介绍了如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数来评估聚类结果的质量。通过尝试不同的簇数并计算轮廓系数,我们可以选择一个合适的簇数,从而得到较好的聚类结果。轮廓系数是一个非常有用的指标,可以帮助我们判断聚类结果的好坏。

相关推荐
博睿谷IT99_5 分钟前
华为HCIP-AI认证考试版本更新通知
人工智能·华为
一点.点1 小时前
SafeDrive:大语言模型实现自动驾驶汽车知识驱动和数据驱动的风险-敏感决策——论文阅读
人工智能·语言模型·自动驾驶
concisedistinct1 小时前
如何评价大语言模型架构 TTT ?模型应不应该永远“固定”在推理阶段?模型是否应当在使用时继续学习?
人工智能·语言模型·大模型
找了一圈尾巴1 小时前
AI Agent-基础认知与架构解析
人工智能·ai agent
jzwei0231 小时前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
小言Ai工具箱2 小时前
PuLID:高效的图像变脸,可以通过文本提示编辑图像,通过指令修改人物属性,个性化文本到图像生成模型,支持AI变脸!艺术创作、虚拟形象定制以及影视制作
图像处理·人工智能·计算机视觉
白熊1882 小时前
【计算机视觉】基于深度学习的实时情绪检测系统:emotion-detection项目深度解析
人工智能·深度学习·计算机视觉
TextIn智能文档云平台2 小时前
PDF文档解析新突破:图表识别、公式还原、手写字体处理,让AI真正读懂复杂文档!
图像处理·人工智能·算法·自然语言处理·pdf·ocr
老任与码2 小时前
Spring AI(2)—— 发送消息的API
java·人工智能·spring ai
AI改变未来2 小时前
智慧城市新力量!AI如何助力社会治理创新?
人工智能·ai·智慧城市·ai应用