KMeans实战——聚类和轮廓系数评估啤酒数据集

原理:

在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(Silhouette Score)来评估聚类结果的质量。

1. 数据准备

首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一个啤酒数据集,包含啤酒的热量(calories)、钠含量(sodium)、酒精含量(alcohol)和成本(cost)等特征。

python 复制代码
import pandas as pd
from sklearn.cluster import KMeans
from sklearn import metrics
import matplotlib.pyplot as plt

# 加载数据集
beer = pd.read_table('data.txt', sep=' ', encoding='utf-8', engine='python')

# 选择特征
X = beer[['calories', 'sodium', 'alcohol', 'cost']]

2. 轮廓系数简介

轮廓系数是一种用于评估聚类质量的指标,其值介于-1和1之间。轮廓系数越接近1,表示聚类结果越好;越接近-1,则表示聚类结果可能存在问题。轮廓系数的计算公式如下:

其中:

3. 计算不同簇数的轮廓系数

为了找到最佳的簇数,我们可以尝试不同的簇数,并计算每个簇数对应的轮廓系数。代码如下:

python 复制代码
scores = []
for k in range(2, 10):
    labels = KMeans(n_clusters=k).fit(X).labels_  # 聚类
    score = metrics.silhouette_score(X, labels)  # 计算轮廓系数
    scores.append(score)

print(scores)

4. 绘制轮廓系数随簇数变化的曲线

为了更直观地观察轮廓系数随簇数的变化,我们可以绘制轮廓系数曲线:

python 复制代码
plt.plot(list(range(2, 10)), scores)
plt.xlabel('Number of Clusters')
plt.ylabel('Silhouette Score')
plt.show()

通过观察曲线,我们可以选择一个轮廓系数较高的簇数作为最终的聚类数。

5. 进行聚类并评估结果

假设我们选择簇数为2,进行聚类并评估结果:

python 复制代码
# 聚类
km = KMeans(n_clusters=2).fit(X)
beer['cluster'] = km.labels_

# 计算轮廓系数
score = metrics.silhouette_score(X, beer.cluster)
print(score)

6、运行结果

总结

本文介绍了如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数来评估聚类结果的质量。通过尝试不同的簇数并计算轮廓系数,我们可以选择一个合适的簇数,从而得到较好的聚类结果。轮廓系数是一个非常有用的指标,可以帮助我们判断聚类结果的好坏。

相关推荐
Jay2002111几秒前
【机器学习】10 正则化 - 减小过拟合
人工智能·机器学习
sxwuyanzu几秒前
企业知识库的隐形危机:从“文档堆“到“知识系统“的进化之路
人工智能
5***790011 分钟前
人工智能在环保监测中的数据分析
人工智能
rgb2gray18 分钟前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
算家计算21 分钟前
芯片战打响!谷歌TPU挑战英伟达:AI算力战争背后的行业变局
人工智能·nvidia·芯片
技术支持者python,php1 小时前
训练模型,物体识别(opencv)
人工智能·opencv·计算机视觉
爱笑的眼睛111 小时前
深入理解MongoDB PyMongo API:从基础到高级实战
java·人工智能·python·ai
软件开发技术深度爱好者1 小时前
基于多个大模型自己建造一个AI智能助手
人工智能
中國龍在廣州2 小时前
现在人工智能的研究路径可能走反了
人工智能·算法·搜索引擎·chatgpt·机器人
攻城狮7号2 小时前
小米具身大模型 MiMo-Embodied 发布并全面开源:统一机器人与自动驾驶
人工智能·机器人·自动驾驶·开源大模型·mimo-embodied·小米具身大模型