实践 PyTorch 手写数字识别

py 版本:Python 3.12.7

安装库: pip install numpy torch torchvision matplotlib

运行: python test.py

py版本不对可能无法运行,默认数据集需要科学上网才能下载,默认的验证代码是从验证包里取图片,注释的代码是我本地构造的图片,用库里的图片,替换纯色背景,手写一个数字,大小改到28x28就可以验证了

python 复制代码
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
import matplotlib.pyplot as plt
from PIL import Image


class Net(torch.nn.Module):

    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(28*28, 64)
        self.fc2 = torch.nn.Linear(64, 64)
        self.fc3 = torch.nn.Linear(64, 64)
        self.fc4 = torch.nn.Linear(64, 10)
    
    def forward(self, x):
        x = torch.nn.functional.relu(self.fc1(x))
        x = torch.nn.functional.relu(self.fc2(x))
        x = torch.nn.functional.relu(self.fc3(x))
        x = torch.nn.functional.log_softmax(self.fc4(x), dim=1)
        return x


def get_data_loader(is_train):
    to_tensor = transforms.Compose([transforms.ToTensor()])
    data_set = MNIST("", is_train, transform=to_tensor, download=True)
    return DataLoader(data_set, batch_size=15, shuffle=True)


def evaluate(test_data, net):
    n_correct = 0
    n_total = 0
    with torch.no_grad():
        for (x, y) in test_data:
            outputs = net.forward(x.view(-1, 28*28))
            for i, output in enumerate(outputs):
                if torch.argmax(output) == y[i]:
                    n_correct += 1
                n_total += 1
    return n_correct / n_total


def main():

    train_data = get_data_loader(is_train=True)
    test_data = get_data_loader(is_train=False)
    net = Net()
    
    print("initial accuracy:", evaluate(test_data, net))
    optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
    for epoch in range(2):
        for (x, y) in train_data:
            net.zero_grad()
            output = net.forward(x.view(-1, 28*28))
            loss = torch.nn.functional.nll_loss(output, y)
            loss.backward()
            optimizer.step()
        print("epoch", epoch, "accuracy:", evaluate(test_data, net))

    for (n, (x, _)) in enumerate(test_data):
        if n > 3:
            break
        predict = torch.argmax(net.forward(x[0].view(-1, 28*28)))
        plt.figure(n)
        plt.imshow(x[0].view(28, 28))
        plt.title("prediction: " + str(int(predict)))
    plt.show()

def load_custom_image(image_path):
    """ 加载自定义手写数字图片,并转换为 MNIST 兼容格式 """
    transform = transforms.Compose([
        transforms.Grayscale(num_output_channels=1),  # 转换为灰度图
        transforms.Resize((28, 28)),  # 调整大小
        transforms.ToTensor(),  # 转换为 PyTorch 张量
        transforms.Normalize((0.1307,), (0.3081,))  # 使用 MNIST 的归一化参数
    ])
    image = Image.open(image_path)
    return transform(image).unsqueeze(0)  # 添加 batch 维度

if __name__ == "__main__":
    main()
    """
    train_data = get_data_loader(is_train=True)
    test_data = get_data_loader(is_train=False)
    net = Net()
    
    print("initial accuracy:", evaluate(test_data, net))
    optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
    for epoch in range(2):
        for (x, y) in train_data:
            net.zero_grad()
            output = net.forward(x.view(-1, 28*28))
            loss = torch.nn.functional.nll_loss(output, y)
            loss.backward()
            optimizer.step()
        print("epoch", epoch, "accuracy:", evaluate(test_data, net))
    
    image_tensor = load_custom_image("C:\\Users\\we\\Desktop\\7.png")
    predict = torch.argmax(net.forward(image_tensor.view(-1, 28*28)))
    print("prediction: " + str(int(predict)))
    """

默认代码验证结果

手写图片

验证结果

来源:【10分钟入门神经网络 PyTorch 手写数字识别】 https://www.bilibili.com/video/BV1GC4y15736/?share_source=copy_web\&vd_source=33a387ed337161d7e4f60dd9167ab954

相关推荐
nuise_44 分钟前
李沐《动手学深度学习》 | 多层感知机
人工智能·深度学习
孤独野指针*P2 小时前
深度学习中的目标检测:从 PR 曲线到 AP
python·深度学习·yolo
IT信息技术学习圈2 小时前
Python程序打包为EXE文件的全面指南
开发语言·python
大有数据可视化3 小时前
人工智能如何革新数据可视化领域?探索未来趋势
人工智能·信息可视化
AI technophile4 小时前
OpenCV计算机视觉实战(4)——计算机视觉核心技术全解析
人工智能·opencv·计算机视觉
云和数据.ChenGuang4 小时前
人工智能 机器学习期末考试题
开发语言·人工智能·python·机器学习·毕业设计
珊珊而川5 小时前
3.1监督微调
人工智能
我是小伍同学5 小时前
基于卷积神经网络和Pyqt5的猫狗识别小程序
人工智能·python·神经网络·qt·小程序·cnn
lllsure7 小时前
Python基础语法
开发语言·python
界面开发小八哥7 小时前
界面控件DevExpress WinForms v25.1新功能预览 - 功能区组件全新升级
人工智能·.net·界面控件·winform·devexpress