实践 PyTorch 手写数字识别

py 版本:Python 3.12.7

安装库: pip install numpy torch torchvision matplotlib

运行: python test.py

py版本不对可能无法运行,默认数据集需要科学上网才能下载,默认的验证代码是从验证包里取图片,注释的代码是我本地构造的图片,用库里的图片,替换纯色背景,手写一个数字,大小改到28x28就可以验证了

python 复制代码
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
import matplotlib.pyplot as plt
from PIL import Image


class Net(torch.nn.Module):

    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(28*28, 64)
        self.fc2 = torch.nn.Linear(64, 64)
        self.fc3 = torch.nn.Linear(64, 64)
        self.fc4 = torch.nn.Linear(64, 10)
    
    def forward(self, x):
        x = torch.nn.functional.relu(self.fc1(x))
        x = torch.nn.functional.relu(self.fc2(x))
        x = torch.nn.functional.relu(self.fc3(x))
        x = torch.nn.functional.log_softmax(self.fc4(x), dim=1)
        return x


def get_data_loader(is_train):
    to_tensor = transforms.Compose([transforms.ToTensor()])
    data_set = MNIST("", is_train, transform=to_tensor, download=True)
    return DataLoader(data_set, batch_size=15, shuffle=True)


def evaluate(test_data, net):
    n_correct = 0
    n_total = 0
    with torch.no_grad():
        for (x, y) in test_data:
            outputs = net.forward(x.view(-1, 28*28))
            for i, output in enumerate(outputs):
                if torch.argmax(output) == y[i]:
                    n_correct += 1
                n_total += 1
    return n_correct / n_total


def main():

    train_data = get_data_loader(is_train=True)
    test_data = get_data_loader(is_train=False)
    net = Net()
    
    print("initial accuracy:", evaluate(test_data, net))
    optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
    for epoch in range(2):
        for (x, y) in train_data:
            net.zero_grad()
            output = net.forward(x.view(-1, 28*28))
            loss = torch.nn.functional.nll_loss(output, y)
            loss.backward()
            optimizer.step()
        print("epoch", epoch, "accuracy:", evaluate(test_data, net))

    for (n, (x, _)) in enumerate(test_data):
        if n > 3:
            break
        predict = torch.argmax(net.forward(x[0].view(-1, 28*28)))
        plt.figure(n)
        plt.imshow(x[0].view(28, 28))
        plt.title("prediction: " + str(int(predict)))
    plt.show()

def load_custom_image(image_path):
    """ 加载自定义手写数字图片,并转换为 MNIST 兼容格式 """
    transform = transforms.Compose([
        transforms.Grayscale(num_output_channels=1),  # 转换为灰度图
        transforms.Resize((28, 28)),  # 调整大小
        transforms.ToTensor(),  # 转换为 PyTorch 张量
        transforms.Normalize((0.1307,), (0.3081,))  # 使用 MNIST 的归一化参数
    ])
    image = Image.open(image_path)
    return transform(image).unsqueeze(0)  # 添加 batch 维度

if __name__ == "__main__":
    main()
    """
    train_data = get_data_loader(is_train=True)
    test_data = get_data_loader(is_train=False)
    net = Net()
    
    print("initial accuracy:", evaluate(test_data, net))
    optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
    for epoch in range(2):
        for (x, y) in train_data:
            net.zero_grad()
            output = net.forward(x.view(-1, 28*28))
            loss = torch.nn.functional.nll_loss(output, y)
            loss.backward()
            optimizer.step()
        print("epoch", epoch, "accuracy:", evaluate(test_data, net))
    
    image_tensor = load_custom_image("C:\\Users\\we\\Desktop\\7.png")
    predict = torch.argmax(net.forward(image_tensor.view(-1, 28*28)))
    print("prediction: " + str(int(predict)))
    """

默认代码验证结果

手写图片

验证结果

来源:【10分钟入门神经网络 PyTorch 手写数字识别】 https://www.bilibili.com/video/BV1GC4y15736/?share_source=copy_web\&vd_source=33a387ed337161d7e4f60dd9167ab954

相关推荐
koo3643 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波3 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客3 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室3 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭3 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
卡卡恩3 小时前
使用uv创建系统全局python执行环境
python
牛客企业服务3 小时前
企业招聘新趋势:「AI面试」如何破解在线作弊难题?
人工智能·面试·职场和发展·招聘·ai招聘
查士丁尼·绵3 小时前
笔试-座位调整
python
infominer4 小时前
数据处理像搭乐高?详解 RAGFlow Ingestion Pipeline
人工智能·ai-native
飞翔的佩奇4 小时前
【完整源码+数据集+部署教程】【运动的&足球】足球场地区域图像分割系统源码&数据集全套:改进yolo11-RFAConv
前端·python·yolo·计算机视觉·数据集·yolo11·足球场地区域图像分割系统