以下是一个简单的多时间尺度的配电网深度强化学习无功优化策略的Python示例代码框架,用于帮助你理解如何使用深度强化学习(以深度Q网络 DQN 为例)来处理配电网的无功优化问题。在实际应用中,你可能需要根据具体的配电网模型和需求进行大量的修改和扩展。
python
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
# 定义深度Q网络模型
class DQN(nn.Module):
def __init__(self, state_size, action_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, action_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义环境类,这里简化为配电网无功优化的环境抽象
class DistributionNetworkEnv:
def __init__(self, num_buses, time_steps):
self.num_buses = num_buses
self.time_steps = time_steps
self.current_time_step = 0
self.state = np.zeros((self.num_buses,)) # 示例状态,可根据实际定义
def step(self, action):
# 这里需要根据实际的配电网模型计算奖励、下一个状态和是否结束
reward = 0
next_state = self.state # 示例,需实际计算
done = self.current_time_step >= self.time_steps - 1
self.current_time_step += 1
return next_state, reward, done
def reset(self):
self.current_time_step = 0
self.state = np.zeros((self.num_buses,))
return self.state
# 训练函数
def train_dqn(env, dqn, target_dqn, memory, batch_size, gamma, tau, episodes):
optimizer = optim.Adam(dqn.parameters(), lr=0.001)
loss_fn = nn.MSELoss()
for episode in range(episodes):
state = env.reset()
state = torch.FloatTensor(state).unsqueeze(0)
done = False
while not done:
# 选择动作
q_values = dqn(state)
action = torch.argmax(q_values, dim=1).item()
# 执行动作,获取下一个状态、奖励和是否结束
next_state, reward, done = env.step(action)
next_state = torch.FloatTensor(next_state).unsqueeze(0)
reward = torch.tensor([reward], dtype=torch.float32).unsqueeze(0)
done_tensor = torch.tensor([done], dtype=torch.float32).unsqueeze(0)
# 存储经验
memory.append((state, action, reward, next_state, done_tensor))
if len(memory) > batch_size:
# 从记忆中采样
batch = np.random.choice(len(memory), batch_size, replace=False)
state_batch, action_batch, reward_batch, next_state_batch, done_batch = zip(*[memory[i] for i in batch])
state_batch = torch.cat(state_batch)
action_batch = torch.tensor(action_batch, dtype=torch.long)
reward_batch = torch.cat(reward_batch)
next_state_batch = torch.cat(next_state_batch)
done_batch = torch.cat(done_batch)
# 计算目标Q值
with torch.no_grad():
target_q_values = target_dqn(next_state_batch)
max_target_q = torch.max(target_q_values, dim=1)[0].unsqueeze(1)
target_q = reward_batch + (1 - done_batch) * gamma * max_target_q
# 计算当前Q值
current_q = dqn(state_batch).gather(1, action_batch.unsqueeze(1)).squeeze(1)
# 计算损失并更新网络
loss = loss_fn(current_q, target_q)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 更新目标网络
for target_param, param in zip(target_dqn.parameters(), dqn.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
state = next_state
print(f"Episode {episode + 1} completed")
return dqn
# 主函数
def main():
num_buses = 10 # 示例配电网的节点数
time_steps = 100 # 示例时间尺度
state_size = num_buses
action_size = 5 # 示例动作数量
batch_size = 32
gamma = 0.99
tau = 0.001
episodes = 100
env = DistributionNetworkEnv(num_buses, time_steps)
dqn = DQN(state_size, action_size)
target_dqn = DQN(state_size, action_size)
memory = []
trained_dqn = train_dqn(env, dqn, target_dqn, memory, batch_size, gamma, tau, episodes)
# 这里可以添加对训练好的模型进行评估和可视化的代码
if __name__ == "__main__":
main()
上述代码的主要功能和结构如下:
- 定义深度Q网络模型 :
DQN
类定义了一个简单的多层感知机,用于估计状态的Q值。 - 定义环境类 :
DistributionNetworkEnv
类是配电网无功优化环境的一个简单抽象,包含了状态、动作、奖励等相关的操作。 - 训练函数 :
train_dqn
函数实现了深度Q网络的训练过程,包括选择动作、执行动作、存储经验、采样经验、计算Q值和更新网络等步骤。 - 主函数 :
main
函数设置了环境和模型的参数,并调用训练函数进行训练。
请注意,这只是一个非常基础的示例,实际的配电网无功优化问题需要更复杂的环境建模、状态表示和奖励设计。你可能需要结合电力系统的专业知识和实际数据进行进一步的开发和优化。