NN:神经网络

预测好坏的判断标准:

三个公设(对f(X)函数值修饰后进行判断):

  1. 间隔最大
  2. 似然值(w变化,不是x)(概率)最大<-->交叉熵最大
  3. 方差最小

激活函数是为了得出结果,损失函数是为了让结果最佳

机器学习三大要素:

  1. 模型(隐藏层)
  2. 策略(公设)(输出层)
  3. 算法(反向传播,关键为梯度下降法)

ps:梯度下降法的步长(学习率lr)是一个超参数

神经网络:

1. 可看做数据升维
  1. 输入层(数据处理)数据的维度

一个平面的原因是,没激活函数的情况下,w1x1+w2x2+b=z是个线性函数

分界线:二维平面里的线到n维空间里的超平面

ps

  • 激活函数,非线性

  • 权重weight和偏置bias

  • 神经网络的复杂性来源于激活函数

  1. 隐藏层(让模型更复杂)

中间的神经元个数可以对数据进行升维操作,再找到一个超平面对数据进行划分

ps:升维操作,完成维度的映射

  1. 输出层

神经网络可以有多个输出节点,处理多分类问题

多分类问题,本质上是多个二分类问题,每个节点都在进行二分类判断

输出结果使用softmax描述,进行归一处理(各分类的概率分布)

softmax可以看做是sigmoid函数的扩展和升级

分母是所有分类数值的和,分子是各个分类自己的数值,计算出的是各分类的概率(归一)

可看做数据降维

进行数据的降维操作,提取特征,不需要原始数据的所有维度

隐藏层越深,抽象程度越高

王木头up主哔站视频:

学习分享一年,对神经网络的理解全都在这40分钟里了

梯度消失是由于深层神经网络在链式求导时,连乘项的绝对值小于1导致的(例如使用sigmoid激活函数时,远离原点处的梯度接近于0),不是由于学习率的高次方导致的。

梯度消失是由于深层神经网络在链式求导时,连乘项的绝对值小于1导致的(例如使用sigmoid激活函数时,远离原点处的梯度接近于0),不是由于学习率的高次方导致的。

并且在梯度下降过程中更新梯度时,每一层参数的梯度项乘的是同一个学习率,不存在次方的情况。

相关推荐
牙牙要健康1 分钟前
【深度学习】【目标检测】【Ultralytics-YOLO系列】YOLOV3核心文件detect.py解读
深度学习·yolo·目标检测
奔驰的小野码24 分钟前
SpringAI实现AI应用-自定义顾问(Advisor)
java·人工智能·spring boot·spring
qq_263_tohua28 分钟前
第99期 dropout防止过拟合
pytorch·python·深度学习
奔驰的小野码29 分钟前
SpringAI实现AI应用-使用redis持久化聊天记忆
java·数据库·人工智能·redis·spring
2401_8729309632 分钟前
催缴机器人如何实现停车费追缴“零遗漏”?
人工智能·汽车·智慧城市
zskj_zhyl40 分钟前
数字康养新范式:七彩喜平台重构智慧养老生态的深度实践
大数据·人工智能·物联网
白码低代码1 小时前
橡胶制品行业质检管理的痛点 质检LIMS如何重构橡胶制品质检价值链
大数据·人工智能·重构·lims·实验室管理系统
boooo_hhh1 小时前
第J7周:对于ResNeXt-50算法的思考
开发语言·python·深度学习
tmiger1 小时前
图像匹配导航定位技术 第 10 章
人工智能·算法·计算机视觉
小彭律师1 小时前
电动汽车充电设施可调能力聚合评估与预测
人工智能·深度学习·机器学习