NN:神经网络

预测好坏的判断标准:

三个公设(对f(X)函数值修饰后进行判断):

  1. 间隔最大
  2. 似然值(w变化,不是x)(概率)最大<-->交叉熵最大
  3. 方差最小

激活函数是为了得出结果,损失函数是为了让结果最佳

机器学习三大要素:

  1. 模型(隐藏层)
  2. 策略(公设)(输出层)
  3. 算法(反向传播,关键为梯度下降法)

ps:梯度下降法的步长(学习率lr)是一个超参数

神经网络:

1. 可看做数据升维
  1. 输入层(数据处理)数据的维度

一个平面的原因是,没激活函数的情况下,w1x1+w2x2+b=z是个线性函数

分界线:二维平面里的线到n维空间里的超平面

ps

  • 激活函数,非线性

  • 权重weight和偏置bias

  • 神经网络的复杂性来源于激活函数

  1. 隐藏层(让模型更复杂)

中间的神经元个数可以对数据进行升维操作,再找到一个超平面对数据进行划分

ps:升维操作,完成维度的映射

  1. 输出层

神经网络可以有多个输出节点,处理多分类问题

多分类问题,本质上是多个二分类问题,每个节点都在进行二分类判断

输出结果使用softmax描述,进行归一处理(各分类的概率分布)

softmax可以看做是sigmoid函数的扩展和升级

分母是所有分类数值的和,分子是各个分类自己的数值,计算出的是各分类的概率(归一)

可看做数据降维

进行数据的降维操作,提取特征,不需要原始数据的所有维度

隐藏层越深,抽象程度越高

王木头up主哔站视频:

学习分享一年,对神经网络的理解全都在这40分钟里了

梯度消失是由于深层神经网络在链式求导时,连乘项的绝对值小于1导致的(例如使用sigmoid激活函数时,远离原点处的梯度接近于0),不是由于学习率的高次方导致的。

梯度消失是由于深层神经网络在链式求导时,连乘项的绝对值小于1导致的(例如使用sigmoid激活函数时,远离原点处的梯度接近于0),不是由于学习率的高次方导致的。

并且在梯度下降过程中更新梯度时,每一层参数的梯度项乘的是同一个学习率,不存在次方的情况。

相关推荐
博大世界6 分钟前
解剖智驾“大脑”:一文读懂自动驾驶系统软件架构
人工智能·机器学习·自动驾驶
大熊猫侯佩11 分钟前
苹果 AI 探秘:代号 “AFM” —— “温柔的反叛者”
人工智能·sft·ai 大模型·apple 本地大模型·foundationmodel·苹果智能·applebot
AI Echoes25 分钟前
别再手工缝合API了!开源LLMOps神器LMForge,让你像搭积木一样玩转AI智能体!
人工智能·python·langchain·开源·agent
AI Echoes28 分钟前
从零构建企业级LLMOps平台:LMForge——支持多模型、可视化编排、知识库与安全审核的全栈解决方案
人工智能·python·langchain·开源·agent
Coovally AI模型快速验证29 分钟前
无人机小目标检测新SOTA:MASF-YOLO重磅开源,多模块协同助力精度飞跃
人工智能·yolo·目标检测·机器学习·计算机视觉·无人机
zskj_zhyl34 分钟前
七彩喜智慧养老:科技向善,让“养老”变“享老”的智慧之选
大数据·人工智能·科技·物联网·机器人
微盛企微增长小知识41 分钟前
企业微信AI怎么用才高效?3大功能+5个实操场景,实测效率提升50%
人工智能·企业微信
啦啦啦在冲冲冲1 小时前
解释一下roberta,bert-chinese和bert-case有啥区别还有bert-large这些
人工智能·深度学习·bert
deepdata_cn1 小时前
混合架构大型语言模型(Jamba)
人工智能·语言模型