NN:神经网络

预测好坏的判断标准:

三个公设(对f(X)函数值修饰后进行判断):

  1. 间隔最大
  2. 似然值(w变化,不是x)(概率)最大<-->交叉熵最大
  3. 方差最小

激活函数是为了得出结果,损失函数是为了让结果最佳

机器学习三大要素:

  1. 模型(隐藏层)
  2. 策略(公设)(输出层)
  3. 算法(反向传播,关键为梯度下降法)

ps:梯度下降法的步长(学习率lr)是一个超参数

神经网络:

1. 可看做数据升维
  1. 输入层(数据处理)数据的维度

一个平面的原因是,没激活函数的情况下,w1x1+w2x2+b=z是个线性函数

分界线:二维平面里的线到n维空间里的超平面

ps

  • 激活函数,非线性

  • 权重weight和偏置bias

  • 神经网络的复杂性来源于激活函数

  1. 隐藏层(让模型更复杂)

中间的神经元个数可以对数据进行升维操作,再找到一个超平面对数据进行划分

ps:升维操作,完成维度的映射

  1. 输出层

神经网络可以有多个输出节点,处理多分类问题

多分类问题,本质上是多个二分类问题,每个节点都在进行二分类判断

输出结果使用softmax描述,进行归一处理(各分类的概率分布)

softmax可以看做是sigmoid函数的扩展和升级

分母是所有分类数值的和,分子是各个分类自己的数值,计算出的是各分类的概率(归一)

可看做数据降维

进行数据的降维操作,提取特征,不需要原始数据的所有维度

隐藏层越深,抽象程度越高

王木头up主哔站视频:

学习分享一年,对神经网络的理解全都在这40分钟里了

梯度消失是由于深层神经网络在链式求导时,连乘项的绝对值小于1导致的(例如使用sigmoid激活函数时,远离原点处的梯度接近于0),不是由于学习率的高次方导致的。

梯度消失是由于深层神经网络在链式求导时,连乘项的绝对值小于1导致的(例如使用sigmoid激活函数时,远离原点处的梯度接近于0),不是由于学习率的高次方导致的。

并且在梯度下降过程中更新梯度时,每一层参数的梯度项乘的是同一个学习率,不存在次方的情况。

相关推荐
亚马逊云开发者34 分钟前
Q CLI 助力合合信息实现 Aurora 的升级运营
人工智能
全栈胖叔叔-瓜州1 小时前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
坚果派·白晓明2 小时前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing2 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas96952 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
大佐不会说日语~3 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
CeshirenTester3 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
世岩清上3 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM3 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能
TMT星球3 小时前
深业云从人工智能产业投资基金设立,聚焦AI和具身智能相关产业
人工智能