【GPT入门】第22课 langchain LCEL介绍

【GPT入门】第22课 langchain LCEL介绍

  • [1. LCEL介绍与特点](#1. LCEL介绍与特点)
  • [2. 原生API与LCEL的对比](#2. 原生API与LCEL的对比)
  • [2. 简单demo](#2. 简单demo)

1. LCEL介绍与特点

LCEL 即 LangChain Expression Language,是 LangChain 推出的一种声明式语言,用于简化和优化在 LangChain 框架内构建复杂链和应用的过程 。以下详细介绍其特点和作用:
特点

声明式语法:传统的链式操作构建方式可能需要编写较多的代码和复杂的逻辑,而 LCEL 使用简洁的声明式语法,让开发者能够以一种直观的方式描述数据在各个组件之间的流动。例如,使用 | 操作符来连接不同的组件,就像搭积木一样轻松组合各个模块,大大提高了代码的可读性和可维护性。

易于组合:支持将不同的 LangChain 组件(如提示模板、语言模型、文档加载器、检索器等)灵活组合在一起,形成复杂的处理流程。开发者可以根据具体需求,快速调整和扩展链的结构,而无需对底层代码进行大规模修改。

流式处理:能够对数据进行流式处理,这意味着在处理大型数据集或长时间运行的任务时,可以逐步获取和处理结果,而不是等待整个任务完成后再获取输出。这种流式处理的方式可以提高系统的响应速度和用户体验。

作用
简化开发流程

开发者可以使用 LCEL 快速搭建起复杂的自然语言处理应用,而无需编写大量的样板代码。例如,在构建一个知识问答系统时,可以通过简单的链式操作将文档检索器、提示模板和语言模型连接起来,实现从文档中检索相关信息并生成答案的功能。

2. 原生API与LCEL的对比

2. 简单demo

c 复制代码
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough

# 定义提示模板
prompt = PromptTemplate.from_template("关于 {topic} 的信息:")

# 初始化语言模型
llm = ChatOpenAI()

# 使用 LCEL 构建链式操作
chain = (
    {"topic": RunnablePassthrough()} | prompt | llm
)

# 运行链式操作
topic = "历史故事"
result = chain.invoke(topic)
print(result)

支持流式输出: 对于需要实时反馈的应用场景,如聊天机器人,LCEL 的流式处理功能可以让用户更快地看到部分结果,增强交互的实时性和流畅性。

c 复制代码
for chunk in chain.stream("科技前沿"):
    print(chunk, end="", flush=True)
相关推荐
为啥全要学2 小时前
vLLM部署Qwen2-7B模型推理
python·langchain·vllm
依旧天真无邪4 小时前
利用GPT实现油猴脚本—网页滚动(优化版)
gpt·个人开发
满怀10155 小时前
【LangChain全栈开发指南】从LLM集成到智能体系统构建
人工智能·python·langchain·ai编程·智能体开发
偷偷折个角︿1 天前
GPT官网/官方入口在哪?国内如何流畅使用ChatGPT?最新镜像站与使用指南
人工智能·gpt·ai·chatgpt
soso(找工作版1 天前
【链表扫盲】FROM GPT
python·gpt·链表
进取星辰2 天前
21. LangChain金融领域:合同审查与风险预警自动化
金融·langchain·自动化
kkai人工智能2 天前
DeepSeek的100个应用场景
人工智能·gpt·学习·chatgpt
tangjunjun-owen3 天前
第三章:langchain加载word文档构建RAG检索教程(基于FAISS库为例)
langchain·llm·word·faiss·rag
Ven%3 天前
LangChain:大语言模型应用的“瑞士军刀”入门指南
人工智能·语言模型·langchain
TGITCIC3 天前
深夜突发:OpenAI紧急修复GPT-4o“献媚”问题
人工智能·gpt·大模型·openai·agi·gpt4o·人工智能趋势