【GPT入门】第22课 langchain LCEL介绍

【GPT入门】第22课 langchain LCEL介绍

  • [1. LCEL介绍与特点](#1. LCEL介绍与特点)
  • [2. 原生API与LCEL的对比](#2. 原生API与LCEL的对比)
  • [2. 简单demo](#2. 简单demo)

1. LCEL介绍与特点

LCEL 即 LangChain Expression Language,是 LangChain 推出的一种声明式语言,用于简化和优化在 LangChain 框架内构建复杂链和应用的过程 。以下详细介绍其特点和作用:
特点

声明式语法:传统的链式操作构建方式可能需要编写较多的代码和复杂的逻辑,而 LCEL 使用简洁的声明式语法,让开发者能够以一种直观的方式描述数据在各个组件之间的流动。例如,使用 | 操作符来连接不同的组件,就像搭积木一样轻松组合各个模块,大大提高了代码的可读性和可维护性。

易于组合:支持将不同的 LangChain 组件(如提示模板、语言模型、文档加载器、检索器等)灵活组合在一起,形成复杂的处理流程。开发者可以根据具体需求,快速调整和扩展链的结构,而无需对底层代码进行大规模修改。

流式处理:能够对数据进行流式处理,这意味着在处理大型数据集或长时间运行的任务时,可以逐步获取和处理结果,而不是等待整个任务完成后再获取输出。这种流式处理的方式可以提高系统的响应速度和用户体验。

作用
简化开发流程

开发者可以使用 LCEL 快速搭建起复杂的自然语言处理应用,而无需编写大量的样板代码。例如,在构建一个知识问答系统时,可以通过简单的链式操作将文档检索器、提示模板和语言模型连接起来,实现从文档中检索相关信息并生成答案的功能。

2. 原生API与LCEL的对比

2. 简单demo

c 复制代码
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough

# 定义提示模板
prompt = PromptTemplate.from_template("关于 {topic} 的信息:")

# 初始化语言模型
llm = ChatOpenAI()

# 使用 LCEL 构建链式操作
chain = (
    {"topic": RunnablePassthrough()} | prompt | llm
)

# 运行链式操作
topic = "历史故事"
result = chain.invoke(topic)
print(result)

支持流式输出: 对于需要实时反馈的应用场景,如聊天机器人,LCEL 的流式处理功能可以让用户更快地看到部分结果,增强交互的实时性和流畅性。

c 复制代码
for chunk in chain.stream("科技前沿"):
    print(chunk, end="", flush=True)
相关推荐
你大爷的,这都没注册了16 小时前
LangChain 安装
langchain
沐雪架构师1 天前
LangChain 1.0 内置的Agent中间件详解
中间件·langchain
Bruk.Liu1 天前
(LangChain实战5):LangChain消息模版ChatPromptTemplate
人工智能·python·langchain·agent
爱敲代码的TOM1 天前
大模型应用开发-LangChain框架基础
python·langchain·大模型应用
Bruk.Liu1 天前
(LangChain实战3):LangChain阻塞式invoke与流式stream的调用
人工智能·python·langchain
Bruk.Liu1 天前
(LangChain实战4):LangChain消息模版PromptTemplate
人工智能·python·langchain
共享家95271 天前
LangChain初识
人工智能·langchain
Wang201220131 天前
langchai自带的搜索功能国内tool有哪些(langchain+deepseek+百度AI搜索 打造带搜索功能的agent)
langchain
玄同7652 天前
Llama.cpp 全实战指南:跨平台部署本地大模型的零门槛方案
人工智能·语言模型·自然语言处理·langchain·交互·llama·ollama
玄同7652 天前
LangChain v1.0+ Prompt 模板完全指南:构建精准可控的大模型交互
人工智能·语言模型·自然语言处理·langchain·nlp·交互·知识图谱