【GPT入门】第22课 langchain LCEL介绍

【GPT入门】第22课 langchain LCEL介绍

  • [1. LCEL介绍与特点](#1. LCEL介绍与特点)
  • [2. 原生API与LCEL的对比](#2. 原生API与LCEL的对比)
  • [2. 简单demo](#2. 简单demo)

1. LCEL介绍与特点

LCEL 即 LangChain Expression Language,是 LangChain 推出的一种声明式语言,用于简化和优化在 LangChain 框架内构建复杂链和应用的过程 。以下详细介绍其特点和作用:
特点

声明式语法:传统的链式操作构建方式可能需要编写较多的代码和复杂的逻辑,而 LCEL 使用简洁的声明式语法,让开发者能够以一种直观的方式描述数据在各个组件之间的流动。例如,使用 | 操作符来连接不同的组件,就像搭积木一样轻松组合各个模块,大大提高了代码的可读性和可维护性。

易于组合:支持将不同的 LangChain 组件(如提示模板、语言模型、文档加载器、检索器等)灵活组合在一起,形成复杂的处理流程。开发者可以根据具体需求,快速调整和扩展链的结构,而无需对底层代码进行大规模修改。

流式处理:能够对数据进行流式处理,这意味着在处理大型数据集或长时间运行的任务时,可以逐步获取和处理结果,而不是等待整个任务完成后再获取输出。这种流式处理的方式可以提高系统的响应速度和用户体验。

作用
简化开发流程

开发者可以使用 LCEL 快速搭建起复杂的自然语言处理应用,而无需编写大量的样板代码。例如,在构建一个知识问答系统时,可以通过简单的链式操作将文档检索器、提示模板和语言模型连接起来,实现从文档中检索相关信息并生成答案的功能。

2. 原生API与LCEL的对比

2. 简单demo

c 复制代码
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough

# 定义提示模板
prompt = PromptTemplate.from_template("关于 {topic} 的信息:")

# 初始化语言模型
llm = ChatOpenAI()

# 使用 LCEL 构建链式操作
chain = (
    {"topic": RunnablePassthrough()} | prompt | llm
)

# 运行链式操作
topic = "历史故事"
result = chain.invoke(topic)
print(result)

支持流式输出: 对于需要实时反馈的应用场景,如聊天机器人,LCEL 的流式处理功能可以让用户更快地看到部分结果,增强交互的实时性和流畅性。

c 复制代码
for chunk in chain.stream("科技前沿"):
    print(chunk, end="", flush=True)
相关推荐
nju_spy6 小时前
GPT 系列论文1-2 两阶段半监督 + zero-shot prompt
人工智能·gpt·nlp·大语言模型·zero-shot·transformer架构·半监督训练
*星星之火*9 小时前
【GPT入门】第67课 多模态模型实践: 本地部署文生视频模型和图片推理模型
gpt
技术程序猿华锋9 小时前
深度解码OpenAI的2025野心:Codex重生与GPT-5 APIKey获取调用示例
人工智能·vscode·python·gpt·深度学习·编辑器
kunwen12320 小时前
机器学习、深度学习
rnn·langchain·cnn·transformer·langgraph
钝挫力PROGRAMER21 小时前
GPT与BERT BGE
人工智能·gpt·bert
edisao2 天前
[特殊字符] 从助手到引擎:基于 GPT 的战略协作系统演示
大数据·人工智能·gpt
Awesome Baron2 天前
《Learning Langchain》阅读笔记13-Agent(1):Agent Architecture
笔记·langchain·llm
coder_pig2 天前
👦抠腚男孩的AI学习之旅 | 7、LangChain (三) - 实战:知识库问答机器人 (RAG )
langchain·aigc·ai编程
阿加犀智能2 天前
使用Langchain生成本地rag知识库并搭载大模型
服务器·python·langchain
陈敬雷-充电了么-CEO兼CTO2 天前
BLIP-2革新多模态预训练:QFormer桥接视觉语言,零样本任务性能飙升10.7%!
人工智能·gpt·机器学习·机器人·多模态·blip·多模态大模型