昆仑万维开源 Skywork R1V:开源多模态推理核弹!视觉链式分析超越人类专家

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🔍 「放射科医生颤抖!这个AI看片比主任多推演3步逻辑链」

大家好,我是蚝油菜花。你是否也遭遇过这些烧脑时刻:

  • 👉 CT片子看了三小时,病灶藏得比《三体》质子还深
  • 👉 学生交来的数学题手稿,符号扭曲得像量子波动
  • 👉 艺术品拍卖会前,死活参不透画作隐藏的时空密码...

昆仑万维开源的 Skywork R1V ,正在用「视觉推理链」重构认知边界!这个在MATH-500测试中碾压人类94分的AI,藏着三大杀手锏:

  • 跨模态思维瀑布 :把图像信息拆解成127步逻辑链
  • 医学影像透视眼 :从X光片推理出3层并发症风险
  • 动态复杂度适配 :自动调节推理深度节省70%算力

最震撼的是某三甲医院实测------用它对早期肺癌的研判准确率超副主任医师团队!

🚀 快速阅读

Skywork R1V 是一款开源的多模态思维链推理模型,具备强大的视觉链式推理能力。

  1. 核心功能:支持视觉链式推理、数学与科学问题求解、跨模态理解及复杂视觉任务处理。
  2. 技术原理:基于视觉投影器、多模态混合式训练和自适应长度思维链蒸馏,实现高效的视觉推理。

Skywork R1V 是什么

Skywork R1V 是昆仑万维开源的首款工业界多模态思维链推理模型,具备强大的视觉链式推理能力。它能够对视觉输入(如图像或视频)进行多步逻辑推理,逐步分析推导出复杂问题的答案。模型在多个权威基准测试中表现出色,如在 MATH-500 和 AIME 测试中分别取得 94.0 和 72.0 的高分,显著领先于其他主流模型。

Skywork R1V 的开源推动了多模态推理模型的发展,助力学术研究与产业应用探索。它不仅能够处理复杂的视觉任务,如医学影像诊断推理、艺术作品分析等,还能将视觉信息与文本信息深度融合,实现更丰富的语义理解。

Skywork R1V 的主要功能

  • 视觉链式推理:对视觉输入(如图像或视频)进行多步逻辑推理,逐步分析推导出复杂问题的答案。
  • 数学与科学问题求解:识别和解析图像中的数学问题或科学现象,结合推理能力给出逐步解答。
  • 跨模态理解:将视觉信息与文本信息深度融合,实现更丰富的语义理解。
  • 复杂视觉任务处理:处理复杂的视觉任务,如医学影像诊断推理、艺术作品分析等。

Skywork R1V 的技术原理

  • 文本推理能力的多模态迁移:基于视觉投影器(Visual Projector),将文本推理能力高效迁移到视觉任务中,无需重新训练语言模型和视觉编码器。
  • 多模态混合式训练(Iterative SFT + GRPO):结合迭代监督微调(Iterative SFT)和群组相对策略优化(GRPO)强化学习,分阶段对齐视觉与文本表征。
  • 自适应长度思维链蒸馏:引入基于视觉-文本复杂度的自适应推理链长度控制机制,动态优化模型推理过程。
  • 三阶段训练方法:通过初始对齐、推理能力迁移和精准对齐三个阶段,逐步提升模型的多模态推理能力。

如何运行 Skywork R1V

1. 克隆仓库

shell 复制代码
git clone https://github.com/SkyworkAI/Skywork-R1V.git
cd skywork-r1v/inference

2. 设置环境

shell 复制代码
pip install -r requirements.txt
pip install flash-attn --no-build-isolation

3. 运行推理脚本

shell 复制代码
CUDA_VISIBLE_DEVICES="0,1" python inference_with_transformers.py \
    --model_path path \
    --image_paths image1_path \
    --question "your question"

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关推荐
腾讯云开发者3 小时前
架构火花|一线视角下的AI:从应用边界到落地难题
人工智能
Blossom.1183 小时前
基于Mamba-2的实时销量预测系统:如何用选择性状态空间干掉Transformer的O(n²)噩梦
人工智能·python·深度学习·react.js·机器学习·设计模式·transformer
Mintopia3 小时前
AIGC 技术标准制定:Web 行业协同的必要性与难点
人工智能·aigc·trae
Wise玩转AI3 小时前
Day 26|智能体的“伦理与安全边界”
人工智能·python·安全·ai·chatgpt·ai智能体
极速learner3 小时前
n8n本地安装的两种方法:小白入门大白话版本
人工智能·prompt
_codemonster3 小时前
深度学习实战(基于pytroch)系列(三十八)门控循环单元(GRU)从零开始实现
人工智能·深度学习·gru
yang)3 小时前
如何处理DAC的sinc滚降
人工智能
霍格沃兹测试开发学社-小明3 小时前
自动化测试报告样式终极对比:HTMLTestRunner vs BeautifulReport vs HTMLReport vs Allure
人工智能
腾飞开源3 小时前
07_Spring AI 干货笔记之提示词
人工智能·提示词·提示词工程·角色分配·模板渲染·spring ai·令牌机制
Dev7z3 小时前
基于深度学习的手写数学公式识别与计算系统设计与实现
人工智能·深度学习