OpenCV图像拼接(3)图像拼接的类cv::detail::BestOf2NearestMatcher

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

特征匹配器,为每个特征找到两个最佳匹配,并且仅在描述符距离之间的比率大于阈值 match_conf 时保留最佳的一个。

cv::detail::BestOf2NearestMatcher 是 OpenCV 库中用于图像拼接的一个类,特别适用于全景图生成过程中特征匹配的环节。它通过寻找最佳的两个最近邻匹配来提高匹配准确性,从而确定不同图像之间的对应关系。下面是对这个类的一些基本介绍和使用说明。

主要功能

  • 两近邻匹配:该类实现了基于最佳两近邻距离比测试的方法来进行特征匹配。这种方法假设正确的匹配通常是第一个最邻近且显著不同于第二个最邻近的点。

常用成员函数

  • match():执行特征点描述符之间的匹配。注意,这个方法在较新的OpenCV版本中可能是保护成员,因此需要通过实例化对象后直接调用(例如使用 operator())或者继承此类来访问。
  • collectGarbage():清理内部存储以释放内存。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/stitching/detail/matchers.hpp>

using namespace cv;
using namespace cv::detail;

void drawMatchingResult(const Mat& img1, const Mat& img2, const std::vector<KeyPoint>& keypoints1,
                        const std::vector<KeyPoint>& keypoints2, const std::vector<DMatch>& matches)
{
    // 创建一个输出图像来展示两张图片和它们之间的匹配
    Mat outputImg;
    drawMatches(img1, keypoints1, img2, keypoints2, matches, outputImg,
                Scalar::all(-1), Scalar::all(-1), std::vector<char>(),
                DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

    // 显示匹配结果
    imshow("Feature Matches", outputImg);
    waitKey(0);
}

int main()
{
    // 读取两张待匹配的图片
    Mat img1 = imread("/media/dingxin/data/study/OpenCV/sources/images/stich1.png");
    Mat img2 = imread("/media/dingxin/data/study/OpenCV/sources/images/stich2.png");

    if (img1.empty() || img2.empty())
    {
        std::cerr << "Could not open or find the images!" << std::endl;
        return -1;
    }

    // 初始化ORB特征检测器
    Ptr<Feature2D> feature_detector = ORB::create();

    // 检测特征点并计算描述符
    std::vector<KeyPoint> keypoints1, keypoints2;
    Mat descriptors1, descriptors2;
    feature_detector->detectAndCompute(img1, noArray(), keypoints1, descriptors1);
    feature_detector->detectAndCompute(img2, noArray(), keypoints2, descriptors2);

    // 创建ImageFeatures对象并将特征点和描述符填入
    ImageFeatures features1, features2;
    features1.img_idx = 0; // 图片索引
    features1.keypoints = keypoints1;
    features1.descriptors = descriptors1.getUMat(ACCESS_READ); // 使用getUMat方法转换

    features2.img_idx = 1; // 图片索引
    features2.keypoints = keypoints2;
    features2.descriptors = descriptors2.getUMat(ACCESS_READ); // 使用getUMat方法转换

    // 创建BestOf2NearestMatcher实例
    Ptr<BestOf2NearestMatcher> matcher = BestOf2NearestMatcher::create();

    // 使用()运算符来进行匹配
    MatchesInfo matches_info;
    (*matcher)(features1, features2, matches_info);

    // 输出匹配结果的数量
    std::cout << "Found " << matches_info.matches.size() << " matches" << std::endl;

    // 将MatchesInfo中的matches转换为std::vector<DMatch>类型,以便于绘制
    std::vector<DMatch> matches_vector(matches_info.matches.begin(), matches_info.matches.end());

    // 绘制匹配结果
    drawMatchingResult(img1, img2, keypoints1, keypoints2, matches_vector);

    return 0;
}

运行结果

相关推荐
千宇宙航12 分钟前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco41 分钟前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
whoarethenext3 小时前
使用 C++/OpenCV 和 MFCC 构建双重认证智能门禁系统
开发语言·c++·opencv·mfcc
jndingxin3 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦4 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988945 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03275 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿5 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手5 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志5 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc