OpenCV图像拼接(3)图像拼接的类cv::detail::BestOf2NearestMatcher

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

特征匹配器,为每个特征找到两个最佳匹配,并且仅在描述符距离之间的比率大于阈值 match_conf 时保留最佳的一个。

cv::detail::BestOf2NearestMatcher 是 OpenCV 库中用于图像拼接的一个类,特别适用于全景图生成过程中特征匹配的环节。它通过寻找最佳的两个最近邻匹配来提高匹配准确性,从而确定不同图像之间的对应关系。下面是对这个类的一些基本介绍和使用说明。

主要功能

  • 两近邻匹配:该类实现了基于最佳两近邻距离比测试的方法来进行特征匹配。这种方法假设正确的匹配通常是第一个最邻近且显著不同于第二个最邻近的点。

常用成员函数

  • match():执行特征点描述符之间的匹配。注意,这个方法在较新的OpenCV版本中可能是保护成员,因此需要通过实例化对象后直接调用(例如使用 operator())或者继承此类来访问。
  • collectGarbage():清理内部存储以释放内存。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/stitching/detail/matchers.hpp>

using namespace cv;
using namespace cv::detail;

void drawMatchingResult(const Mat& img1, const Mat& img2, const std::vector<KeyPoint>& keypoints1,
                        const std::vector<KeyPoint>& keypoints2, const std::vector<DMatch>& matches)
{
    // 创建一个输出图像来展示两张图片和它们之间的匹配
    Mat outputImg;
    drawMatches(img1, keypoints1, img2, keypoints2, matches, outputImg,
                Scalar::all(-1), Scalar::all(-1), std::vector<char>(),
                DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

    // 显示匹配结果
    imshow("Feature Matches", outputImg);
    waitKey(0);
}

int main()
{
    // 读取两张待匹配的图片
    Mat img1 = imread("/media/dingxin/data/study/OpenCV/sources/images/stich1.png");
    Mat img2 = imread("/media/dingxin/data/study/OpenCV/sources/images/stich2.png");

    if (img1.empty() || img2.empty())
    {
        std::cerr << "Could not open or find the images!" << std::endl;
        return -1;
    }

    // 初始化ORB特征检测器
    Ptr<Feature2D> feature_detector = ORB::create();

    // 检测特征点并计算描述符
    std::vector<KeyPoint> keypoints1, keypoints2;
    Mat descriptors1, descriptors2;
    feature_detector->detectAndCompute(img1, noArray(), keypoints1, descriptors1);
    feature_detector->detectAndCompute(img2, noArray(), keypoints2, descriptors2);

    // 创建ImageFeatures对象并将特征点和描述符填入
    ImageFeatures features1, features2;
    features1.img_idx = 0; // 图片索引
    features1.keypoints = keypoints1;
    features1.descriptors = descriptors1.getUMat(ACCESS_READ); // 使用getUMat方法转换

    features2.img_idx = 1; // 图片索引
    features2.keypoints = keypoints2;
    features2.descriptors = descriptors2.getUMat(ACCESS_READ); // 使用getUMat方法转换

    // 创建BestOf2NearestMatcher实例
    Ptr<BestOf2NearestMatcher> matcher = BestOf2NearestMatcher::create();

    // 使用()运算符来进行匹配
    MatchesInfo matches_info;
    (*matcher)(features1, features2, matches_info);

    // 输出匹配结果的数量
    std::cout << "Found " << matches_info.matches.size() << " matches" << std::endl;

    // 将MatchesInfo中的matches转换为std::vector<DMatch>类型,以便于绘制
    std::vector<DMatch> matches_vector(matches_info.matches.begin(), matches_info.matches.end());

    // 绘制匹配结果
    drawMatchingResult(img1, img2, keypoints1, keypoints2, matches_vector);

    return 0;
}

运行结果

相关推荐
FreeBuf_13 分钟前
生成式AI红队测试:如何有效评估大语言模型
人工智能·网络安全·语言模型
程序员JerrySUN14 分钟前
TensorFlow:从历史到应用
人工智能·python·tensorflow
紫雾凌寒18 分钟前
自然语言处理|Top-K 采样如何解锁文本生成的多样性?
人工智能·深度学习·自然语言处理·贪心算法·top-k·采样原理·随机采样
szxinmai主板定制专家19 分钟前
基于FPGA的3U机箱模拟量高速采样板ADI板卡,应用于轨道交通/电力储能等
arm开发·人工智能·fpga开发·架构
tortorish19 分钟前
大语言模型入门文献推荐
人工智能·语言模型·自然语言处理
Cachel wood30 分钟前
Mysql相关知识:存储引擎、sql执行流程、索引失效
android·人工智能·sql·mysql·算法·前端框架·ab测试
蹦蹦跳跳真可爱5891 小时前
Python----计算机视觉处理(Opencv:ROI图像切割)
人工智能·python·opencv·计算机视觉
xiangzhihong81 小时前
Hunyuan3D,腾讯推出的3D资产系统
人工智能·深度学习·机器学习
Kika写代码1 小时前
Cursor AI IDE
人工智能
视觉&物联智能1 小时前
【杂谈】-2025年AI与网络安全六大趋势展望
人工智能·安全·web安全·网络安全·ai·agi·数字安全