OpenCV图像拼接(3)图像拼接的类cv::detail::BestOf2NearestMatcher

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

特征匹配器,为每个特征找到两个最佳匹配,并且仅在描述符距离之间的比率大于阈值 match_conf 时保留最佳的一个。

cv::detail::BestOf2NearestMatcher 是 OpenCV 库中用于图像拼接的一个类,特别适用于全景图生成过程中特征匹配的环节。它通过寻找最佳的两个最近邻匹配来提高匹配准确性,从而确定不同图像之间的对应关系。下面是对这个类的一些基本介绍和使用说明。

主要功能

  • 两近邻匹配:该类实现了基于最佳两近邻距离比测试的方法来进行特征匹配。这种方法假设正确的匹配通常是第一个最邻近且显著不同于第二个最邻近的点。

常用成员函数

  • match():执行特征点描述符之间的匹配。注意,这个方法在较新的OpenCV版本中可能是保护成员,因此需要通过实例化对象后直接调用(例如使用 operator())或者继承此类来访问。
  • collectGarbage():清理内部存储以释放内存。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/stitching/detail/matchers.hpp>

using namespace cv;
using namespace cv::detail;

void drawMatchingResult(const Mat& img1, const Mat& img2, const std::vector<KeyPoint>& keypoints1,
                        const std::vector<KeyPoint>& keypoints2, const std::vector<DMatch>& matches)
{
    // 创建一个输出图像来展示两张图片和它们之间的匹配
    Mat outputImg;
    drawMatches(img1, keypoints1, img2, keypoints2, matches, outputImg,
                Scalar::all(-1), Scalar::all(-1), std::vector<char>(),
                DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

    // 显示匹配结果
    imshow("Feature Matches", outputImg);
    waitKey(0);
}

int main()
{
    // 读取两张待匹配的图片
    Mat img1 = imread("/media/dingxin/data/study/OpenCV/sources/images/stich1.png");
    Mat img2 = imread("/media/dingxin/data/study/OpenCV/sources/images/stich2.png");

    if (img1.empty() || img2.empty())
    {
        std::cerr << "Could not open or find the images!" << std::endl;
        return -1;
    }

    // 初始化ORB特征检测器
    Ptr<Feature2D> feature_detector = ORB::create();

    // 检测特征点并计算描述符
    std::vector<KeyPoint> keypoints1, keypoints2;
    Mat descriptors1, descriptors2;
    feature_detector->detectAndCompute(img1, noArray(), keypoints1, descriptors1);
    feature_detector->detectAndCompute(img2, noArray(), keypoints2, descriptors2);

    // 创建ImageFeatures对象并将特征点和描述符填入
    ImageFeatures features1, features2;
    features1.img_idx = 0; // 图片索引
    features1.keypoints = keypoints1;
    features1.descriptors = descriptors1.getUMat(ACCESS_READ); // 使用getUMat方法转换

    features2.img_idx = 1; // 图片索引
    features2.keypoints = keypoints2;
    features2.descriptors = descriptors2.getUMat(ACCESS_READ); // 使用getUMat方法转换

    // 创建BestOf2NearestMatcher实例
    Ptr<BestOf2NearestMatcher> matcher = BestOf2NearestMatcher::create();

    // 使用()运算符来进行匹配
    MatchesInfo matches_info;
    (*matcher)(features1, features2, matches_info);

    // 输出匹配结果的数量
    std::cout << "Found " << matches_info.matches.size() << " matches" << std::endl;

    // 将MatchesInfo中的matches转换为std::vector<DMatch>类型,以便于绘制
    std::vector<DMatch> matches_vector(matches_info.matches.begin(), matches_info.matches.end());

    // 绘制匹配结果
    drawMatchingResult(img1, img2, keypoints1, keypoints2, matches_vector);

    return 0;
}

运行结果

相关推荐
缘华工业智维2 小时前
工业设备预测性维护:能源成本降低的“隐藏钥匙”?
大数据·网络·人工智能
DooTask官方号3 小时前
跨语言协作新范式:阿里云Qwen-MT与DooTask的翻译技术突破
人工智能·ai·项目管理·机器翻译·dootask
凯禾瑞华养老实训室4 小时前
聚焦生活照护能力培育:老年生活照护实训室建设清单的模块设计与资源整合
大数据·人工智能·科技·ar·vr·智慧养老·智慧健康养老服务与管理
倔强青铜三4 小时前
苦练Python第64天:从零掌握多线程,threading模块全面指南
人工智能·python·面试
格林威4 小时前
偏振相机是否属于不同光谱相机的范围内
图像处理·人工智能·数码相机·计算机视觉·视觉检测·工业相机
A-大程序员5 小时前
【pytorch】合并与分割
人工智能·pytorch·深度学习
AI新兵5 小时前
AI大事记12:Transformer 架构——重塑 NLP 的革命性技术(上)
人工智能·自然语言处理·transformer
Dongsheng_20196 小时前
【汽车篇】AI深度学习在汽车零部件外观检测——刹车片中的应用
人工智能·汽车
LONGZETECH6 小时前
【龙泽科技】汽车转向悬架与制动安全系统技术1+X仿真教学软件(1.2.3 -初级)
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
JAVA学习通6 小时前
PostgreSQL 的 hstore、arrays 数据类型
人工智能·自然语言处理