Flink TM数据传输时的内存分配

简单分析一下,理解其基本设计思想,基于Flink1.10

一、设计思想

1.1 数据DAG图

写数据的类是ResultPartition,读数据的类是InputChannel

1.2 内存分配图

看内存分配机制就好,其它不用管

TM之间:

TM内部:

1.3 NetworkBufferPool

NetworkBufferPool是TM粒度的,一个TM只有一个,不是任务粒度,读数据与写入数据的使用内存,都从其中进行申请,具体流程见上面的图

二、写数据时的内存分配源码分析

可以先看下ResultPartition类的属性

2.1 BufferPool

其中BufferPool的实现类是LocalBufferPool,它是一个内存池,是ResultPartition维度的,即每个ResultPartition都会有一个,创建时从NetworkBufferPool中申请获取内存,其属性如下:

  1. 其中currentPoolSize代表该LocalBufferPool的最大容量,即MemorySegment个数,MemorySegment 的默认大小是 32 K,支持堆内和堆外内存

  2. 当LocalBufferPool需要获取MemorySegment时,会从availableMemorySegments中获取,如果availableMemorySegments中没有,且numberOfRequestedMemorySegments(已申请的segment数)< currentPoolSize,则去NetworkBufferPool中申请,否则返回null,然后阻塞生产者线程

  3. numberOfRequiredMemorySegments和maxNumberOfMemorySegments由TM参数配置

  4. NetworkBufferPool会根据LocalBufferPool的运行情况,根据其numberOfRequiredMemorySegments和maxNumberOfMemorySegments,动态调整LocalBufferPool的currentPoolSize

  5. 具体的数据写入类是ResultSubpartition,当ResultSubpartition需要写入数据时会从ResultPartition中的LocalBufferPool申请新的内存块,并放入自己的buffers中

三、读数据时的内存分配源码分析

读数据如果是本地内存读取,是直接通过方法调用的,把内存块传过去

如果是不同机器间的内存读取,需要从NetworkBufferPool中分配内存

RemoteInputChannel主要负责读取网络间的数据,从网络中收到的数据buffer,会拷贝在bufferQueue中的内存块中,并放在receivedBuffers中

bufferQueue代表的是可用内存,主要用于把通过网络传输收到的数据buffer的内容拷贝其中

bufferQueue包括独占内存和浮动内存,RemoteInputChannel初始化时,独占内存会从NetworkBufferPool中申请,数量为numberOfSegmentsToRequest,默认为2

浮动内存是当bufferQueue中内存不够用时,小于 初始可用内存+生产者没法送的内存,就会从InputGate中去申请

InputGate会从自己的bufferPool中去拿,bufferPool如果不够,会去NetworkBufferPool中申请

四、为什么要使用内存池

直接采用纳米ai的回答吧:

假设LocalBufferPool 是一个内存池,存储了100个MemorySegment,MemorySegment代表32kb内存,LocalBufferPool 用于数据传输

使用了内存池:

假设任务A需要将一批数据通过网络发送给任务B,流程如下:

  1. 申请内存段 :任务A从LocalBufferPool申请5个MemorySegment(共160KB),用于暂存待发送的数据。
  2. 数据填充 :将待传输的数据序列化后,按顺序写入这5个MemorySegment中。
  3. 数据传输 :将填充好的MemorySegment通过网络层直接传输给任务B,避免数据拷贝(如Flink的NetworkBuffer机制1)。
  4. 接收与处理 :任务B从自己的LocalBufferPool中获取空闲的MemorySegment接收数据,反序列化后处理。
  5. 释放内存 :任务A和任务B在处理完成后,将MemorySegment归还到各自的LocalBufferPool中,供后续请求复用。

不使用内存池:

  1. 频繁申请内存 :每次传输数据时,任务A需通过new byte[32*1024]创建多个32KB的字节数组。
  2. 数据拷贝开销:网络传输前需将数据拷贝到临时字节数组,接收方同样需要多次分配临时存储空间。
  3. 依赖GC回收:传输完成后,这些临时数组成为垃圾对象,需等待JVM垃圾回收器(尤其是Full GC)回收,导致不可预测的延迟。
  4. 内存碎片风险 :大量小对象频繁分配/释放易造成堆内存碎片,降低后续内存分配效率24
相关推荐
QYR_111 小时前
宠物车载安全座椅市场报告:解读行业趋势与投资前景
大数据·人工智能
Leo.yuan1 小时前
实时数据仓库是什么?数据仓库设计怎么做?
大数据·数据库·数据仓库·数据分析·spark
@BreCaspian1 小时前
Git 推送失败解决教程——error: failed to push some refs to
大数据·git·elasticsearch
郭泽元4 小时前
递归树形菜单:优雅处理层级数据的利器
大数据
viperrrrrrrrrr74 小时前
大数据学习(130)-zookeeper
大数据·学习·zookeeper
火龙谷4 小时前
【hadoop】Flink安装部署
flink
火龙谷6 小时前
【hadoop】Davinci数据可视化工具的安装部署
大数据·hadoop·分布式
国际云6 小时前
腾讯云国际版和国内版账户通用吗?一样吗?为什么?
大数据·运维·阿里云·云计算
£菜鸟也有梦6 小时前
从0到1,带你走进Flink的世界
大数据·hadoop·flink·spark
Data-Miner7 小时前
可编辑PPT | 基于大数据中台新能源智能汽车应用解决方案汽车大数据分析与应用解决方案
大数据·汽车