《深度学习》——YOLOv2详解

文章目录

YOLOv2简介

YOLOv2(You Only Look Once, version 2)是一种用于目标检测的深度学习模型,由 Joseph Redmon 等人在 2016 年提出。它是 YOLO 系列的第二代模型,在第一代 YOLO 的基础上进行了多方面的改进,显著提升了检测精度和速度。

YOLOv2改进点

  • Batch Normalization:在网络中加入了批量归一化层,减少了内部协变量偏移,加快了模型收敛速度,同时提高了模型的泛化能力,并且在一定程度上可以替代 Dropout。

  • High Resolution Classifier:先在 ImageNet 上以 448×448 的高分辨率进行分类器的预训练,然后再用于检测任务,使得模型能够更好地学习到图像的特征。

  • Anchor Boxes:借鉴了 Faster R - CNN 中的 Anchor 机制,在预测边界框时使用先验框,增加了模型的灵活性,提高了对不同尺度和长宽比目标的检测能力。

  • Dimension Clusters:通过对训练集中的边界框进行 K - Means 聚类,自动找到合适的先验框尺寸,而不是手动选择,使得模型能够更好地适应数据的分布。

  • Direct Location Prediction:对边界框的位置预测方式进行改进,直接预测边界框相对于网格单元左上角的偏移量,避免了模型训练时的不稳定问题。

  • Fine - Grained Features:引入了 passthrough 层,将前面层的特征图与后面层的特征图进行拼接,使得模型能够利用到更细粒度的特征,有助于检测小目标。

  • Multi - Scale Training:在训练过程中,每隔一定的迭代次数就随机改变输入图像的尺寸,让模型能够适应不同大小的输入图像,增强了模型的鲁棒性。

YOLOv2模型

  • YOLOv2 的基础网络结构是 Darknet - 19,它由 19 个卷积层和 5 个最大池化层组成。网络结构相对简单且高效,能够快速地进行特征提取。最后通过几个卷积层输出预测结果,预测结果包括边界框的位置、置信度以及类别概率。
相关推荐
IT古董26 分钟前
【漫话机器学习系列】255.独立同分布(Independent and Identically Distributed,简称 IID)
人工智能·机器学习
fytianlan26 分钟前
机器学习 day6 -线性回归练习
人工智能·机器学习·线性回归
算家云1 小时前
通义千问席卷日本!开源界“卷王”阿里通义千问成为日本AI发展新基石
人工智能·开源·通义千问·算家云·国产ai·租算力,到算家云·日本ai
ai产品老杨1 小时前
AI赋能安全生产,推进数智化转型的智慧油站开源了。
前端·javascript·vue.js·人工智能·ecmascript
明月醉窗台2 小时前
[20250507] AI边缘计算开发板行业调研报告 (2024年最新版)
人工智能·边缘计算
Blossom.1182 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
安特尼3 小时前
招行数字金融挑战赛数据赛道赛题一
人工智能·python·机器学习·金融·数据分析
带娃的IT创业者3 小时前
《AI大模型应知应会100篇》第59篇:Flowise:无代码搭建大模型应用
人工智能
数澜悠客3 小时前
AI与IoT携手,精准农业未来已来
人工智能·物联网
猎板PCB黄浩3 小时前
AI优化高频PCB信号完整性:猎板PCB的技术突破与应用实践
人工智能