《深度学习》——YOLOv2详解

文章目录

YOLOv2简介

YOLOv2(You Only Look Once, version 2)是一种用于目标检测的深度学习模型,由 Joseph Redmon 等人在 2016 年提出。它是 YOLO 系列的第二代模型,在第一代 YOLO 的基础上进行了多方面的改进,显著提升了检测精度和速度。

YOLOv2改进点

  • Batch Normalization:在网络中加入了批量归一化层,减少了内部协变量偏移,加快了模型收敛速度,同时提高了模型的泛化能力,并且在一定程度上可以替代 Dropout。

  • High Resolution Classifier:先在 ImageNet 上以 448×448 的高分辨率进行分类器的预训练,然后再用于检测任务,使得模型能够更好地学习到图像的特征。

  • Anchor Boxes:借鉴了 Faster R - CNN 中的 Anchor 机制,在预测边界框时使用先验框,增加了模型的灵活性,提高了对不同尺度和长宽比目标的检测能力。

  • Dimension Clusters:通过对训练集中的边界框进行 K - Means 聚类,自动找到合适的先验框尺寸,而不是手动选择,使得模型能够更好地适应数据的分布。

  • Direct Location Prediction:对边界框的位置预测方式进行改进,直接预测边界框相对于网格单元左上角的偏移量,避免了模型训练时的不稳定问题。

  • Fine - Grained Features:引入了 passthrough 层,将前面层的特征图与后面层的特征图进行拼接,使得模型能够利用到更细粒度的特征,有助于检测小目标。

  • Multi - Scale Training:在训练过程中,每隔一定的迭代次数就随机改变输入图像的尺寸,让模型能够适应不同大小的输入图像,增强了模型的鲁棒性。

YOLOv2模型

  • YOLOv2 的基础网络结构是 Darknet - 19,它由 19 个卷积层和 5 个最大池化层组成。网络结构相对简单且高效,能够快速地进行特征提取。最后通过几个卷积层输出预测结果,预测结果包括边界框的位置、置信度以及类别概率。
相关推荐
Sirius Wu16 分钟前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
忙碌54440 分钟前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running43 分钟前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界1 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔2 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起2 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰3 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
boonya3 小时前
ChatBox AI 中配置阿里云百炼模型实现聊天对话
人工智能·阿里云·云计算·chatboxai
8K超高清3 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
老夫的码又出BUG了3 小时前
预测式AI与生成式AI
人工智能·科技·ai