《深度学习》——YOLOv2详解

文章目录

YOLOv2简介

YOLOv2(You Only Look Once, version 2)是一种用于目标检测的深度学习模型,由 Joseph Redmon 等人在 2016 年提出。它是 YOLO 系列的第二代模型,在第一代 YOLO 的基础上进行了多方面的改进,显著提升了检测精度和速度。

YOLOv2改进点

  • Batch Normalization:在网络中加入了批量归一化层,减少了内部协变量偏移,加快了模型收敛速度,同时提高了模型的泛化能力,并且在一定程度上可以替代 Dropout。

  • High Resolution Classifier:先在 ImageNet 上以 448×448 的高分辨率进行分类器的预训练,然后再用于检测任务,使得模型能够更好地学习到图像的特征。

  • Anchor Boxes:借鉴了 Faster R - CNN 中的 Anchor 机制,在预测边界框时使用先验框,增加了模型的灵活性,提高了对不同尺度和长宽比目标的检测能力。

  • Dimension Clusters:通过对训练集中的边界框进行 K - Means 聚类,自动找到合适的先验框尺寸,而不是手动选择,使得模型能够更好地适应数据的分布。

  • Direct Location Prediction:对边界框的位置预测方式进行改进,直接预测边界框相对于网格单元左上角的偏移量,避免了模型训练时的不稳定问题。

  • Fine - Grained Features:引入了 passthrough 层,将前面层的特征图与后面层的特征图进行拼接,使得模型能够利用到更细粒度的特征,有助于检测小目标。

  • Multi - Scale Training:在训练过程中,每隔一定的迭代次数就随机改变输入图像的尺寸,让模型能够适应不同大小的输入图像,增强了模型的鲁棒性。

YOLOv2模型

  • YOLOv2 的基础网络结构是 Darknet - 19,它由 19 个卷积层和 5 个最大池化层组成。网络结构相对简单且高效,能够快速地进行特征提取。最后通过几个卷积层输出预测结果,预测结果包括边界框的位置、置信度以及类别概率。
相关推荐
aihuangwu12 分钟前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_32 分钟前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐1 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai1 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_948120151 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。1 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
杀生丸学AI1 小时前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染
vlln1 小时前
【论文速读】递归语言模型 (Recursive Language Models): 将上下文作为环境的推理范式
人工智能·语言模型·自然语言处理
春日见1 小时前
如何避免代码冲突,拉取分支
linux·人工智能·算法·机器学习·自动驾驶
龙腾AI白云1 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·数据挖掘