检索增强生成RAG with LangChain、OpenAI and FAISS

参考:RAG with LangChain --- BGE documentation

安装依赖

bash 复制代码
pip install langchain_community langchain_openai langchain_huggingface faiss-cpu pymupdf

注册OpenAI key

API keys - OpenAI APIhttps://platform.openai.com/api-keys

完整代码和注释

LangChainDemo.py

python 复制代码
# For openai key
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"

# 1. 初始化OpenAI模型
from langchain_openai.chat_models import ChatOpenAI

llm = ChatOpenAI(model_name="gpt-4o-mini")

# 测试OpenAI调用
response = llm.invoke("What does M3-Embedding stands for?")
print(response.content)

# 2. 加载PDF文档
from langchain_community.document_loaders import PyPDFLoader

# Or download the paper and put a path to the local file instead
loader = PyPDFLoader("https://arxiv.org/pdf/2402.03216")
docs = loader.load()
print(docs[0].metadata)

# 3. 分割文本
from langchain.text_splitter import RecursiveCharacterTextSplitter

# initialize a splitter
splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,    # Maximum size of chunks to return
    chunk_overlap=150,  # number of overlap characters between chunks
)

# use the splitter to split our paper
corpus = splitter.split_documents(docs)
print("分割后文档片段数:", len(corpus))

# 4. 初始化嵌入模型
from langchain_huggingface.embeddings import HuggingFaceEmbeddings

embedding_model = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5",
encode_kwargs={"normalize_embeddings": True})

# 5. 构建向量数据库
from langchain_community.vectorstores import FAISS

vectordb = FAISS.from_documents(corpus, embedding_model)

# (optional) save the vector database to a local directory
# 保存向量库(确保目录权限)
if not os.path.exists("vectorstore.db"):
    vectordb.save_local("vectorstore.db")
print("向量数据库已保存")

# 6. 创建检索链
from langchain_core.prompts import ChatPromptTemplate

template = """
You are a Q&A chat bot.
Use the given context only, answer the question.

<context>
{context}
</context>

Question: {input}
"""

# Create a prompt template
prompt = ChatPromptTemplate.from_template(template)

from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain

doc_chain = create_stuff_documents_chain(llm, prompt)
# Create retriever for later use
retriever = vectordb.as_retriever(search_kwargs={"k": 3})  # 调整检索数量
chain = create_retrieval_chain(retriever, doc_chain)

# 7. 执行查询
response = chain.invoke({"input": "What does M3-Embedding stands for?"})

# print the answer only
print("\n答案:", response['answer'])

运行

bash 复制代码
python LangChainDemo.py

结果

python 复制代码
M3-Embedding refers to "Multimodal, Multi-Task, and Multi-Lingual" embedding techniques that integrate information from multiple modalities (such as text, images, and audio), support multiple tasks (like classification, generation, or translation), and can operate across multiple languages. This approach helps in building versatile models capable of understanding and generating information across various contexts and formats.

If you are looking for a specific context or application of M3-Embedding, please provide more details!
{'producer': 'pdfTeX-1.40.25', 'creator': 'LaTeX with hyperref', 'creationdate': '2024-07-01T00:26:51+00:00', 'author': '', 'keywords': '', 'moddate': '2024-07-01T00:26:51+00:00', 'ptex.fullbanner': 'This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5', 'subject': '', 'title': '', 'trapped': '/False', 'source': 'https://arxiv.org/pdf/2402.03216', 'total_pages': 18, 'page': 0, 'page_label': '1'}
分割后文档片段数: 87
向量数据库已保存

答案: M3-Embedding stands for Multi-Linguality, Multi-Functionality, and Multi-Granularity.
相关推荐
molaifeng4 小时前
告别大模型幻觉:深度解析 RAG 文档切割艺术与 Milvus 高性能实战
milvus·rag
小王努力学编程7 小时前
LangChain—AI应用开发框架(认识模型)
linux·服务器·人工智能·机器学习·容器·langchain
小王努力学编程8 小时前
LangChain——AI应用开发框架
服务器·c++·人工智能·分布式·rpc·langchain·brpc
TracyCoder12310 小时前
LangChain基础篇(四):构建智能Agent——让LLM学会使用工具与记忆
langchain
小汤圆不甜不要钱12 小时前
「Datawhale」RAG技术全栈指南 Task 3
人工智能·深度学习·机器学习·rag
一个无名的炼丹师12 小时前
DeepSeek+LangGraph构建企业级多模态RAG:从PDF复杂解析到Agentic智能检索全流程实战
python·pdf·大模型·多模态·rag
破烂pan12 小时前
Langchain Agent Skills 使用案例:GitHub 仓库分析技能
langchain·skills
老蒋每日coding14 小时前
AI Agent 设计模式系列(十四)—— 知识检索(RAG)模式
人工智能·设计模式·langchain
Nowl14 小时前
基于langchain的个人情感陪伴agent
人工智能·机器学习·langchain
沛沛老爹14 小时前
从Web到AI:多模态Agent图像识别Skills开发实战——JavaScript+Python全栈图像处理方案
java·javascript·图像处理·人工智能·python·rag