检索增强生成RAG with LangChain、OpenAI and FAISS

参考:RAG with LangChain --- BGE documentation

安装依赖

bash 复制代码
pip install langchain_community langchain_openai langchain_huggingface faiss-cpu pymupdf

注册OpenAI key

API keys - OpenAI APIhttps://platform.openai.com/api-keys

完整代码和注释

LangChainDemo.py

python 复制代码
# For openai key
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"

# 1. 初始化OpenAI模型
from langchain_openai.chat_models import ChatOpenAI

llm = ChatOpenAI(model_name="gpt-4o-mini")

# 测试OpenAI调用
response = llm.invoke("What does M3-Embedding stands for?")
print(response.content)

# 2. 加载PDF文档
from langchain_community.document_loaders import PyPDFLoader

# Or download the paper and put a path to the local file instead
loader = PyPDFLoader("https://arxiv.org/pdf/2402.03216")
docs = loader.load()
print(docs[0].metadata)

# 3. 分割文本
from langchain.text_splitter import RecursiveCharacterTextSplitter

# initialize a splitter
splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,    # Maximum size of chunks to return
    chunk_overlap=150,  # number of overlap characters between chunks
)

# use the splitter to split our paper
corpus = splitter.split_documents(docs)
print("分割后文档片段数:", len(corpus))

# 4. 初始化嵌入模型
from langchain_huggingface.embeddings import HuggingFaceEmbeddings

embedding_model = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5",
encode_kwargs={"normalize_embeddings": True})

# 5. 构建向量数据库
from langchain_community.vectorstores import FAISS

vectordb = FAISS.from_documents(corpus, embedding_model)

# (optional) save the vector database to a local directory
# 保存向量库(确保目录权限)
if not os.path.exists("vectorstore.db"):
    vectordb.save_local("vectorstore.db")
print("向量数据库已保存")

# 6. 创建检索链
from langchain_core.prompts import ChatPromptTemplate

template = """
You are a Q&A chat bot.
Use the given context only, answer the question.

<context>
{context}
</context>

Question: {input}
"""

# Create a prompt template
prompt = ChatPromptTemplate.from_template(template)

from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain

doc_chain = create_stuff_documents_chain(llm, prompt)
# Create retriever for later use
retriever = vectordb.as_retriever(search_kwargs={"k": 3})  # 调整检索数量
chain = create_retrieval_chain(retriever, doc_chain)

# 7. 执行查询
response = chain.invoke({"input": "What does M3-Embedding stands for?"})

# print the answer only
print("\n答案:", response['answer'])

运行

bash 复制代码
python LangChainDemo.py

结果

python 复制代码
M3-Embedding refers to "Multimodal, Multi-Task, and Multi-Lingual" embedding techniques that integrate information from multiple modalities (such as text, images, and audio), support multiple tasks (like classification, generation, or translation), and can operate across multiple languages. This approach helps in building versatile models capable of understanding and generating information across various contexts and formats.

If you are looking for a specific context or application of M3-Embedding, please provide more details!
{'producer': 'pdfTeX-1.40.25', 'creator': 'LaTeX with hyperref', 'creationdate': '2024-07-01T00:26:51+00:00', 'author': '', 'keywords': '', 'moddate': '2024-07-01T00:26:51+00:00', 'ptex.fullbanner': 'This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5', 'subject': '', 'title': '', 'trapped': '/False', 'source': 'https://arxiv.org/pdf/2402.03216', 'total_pages': 18, 'page': 0, 'page_label': '1'}
分割后文档片段数: 87
向量数据库已保存

答案: M3-Embedding stands for Multi-Linguality, Multi-Functionality, and Multi-Granularity.
相关推荐
BeforeEasy3 小时前
从零搭建一个完整的ai-agent小项目
人工智能·langchain
猿小羽5 小时前
AI 2.0 时代全栈开发实战:从 Spring AI 到 MLOps 的进阶指南
ai·llm·mlops·rag·vector database·spring ai·prompt engineering
西柚小萌新11 小时前
【人工智能:Agent】--9.2.Langchain自定义中间件
langchain
Java后端的Ai之路13 小时前
【AI应用开发工程师】-RAG知识切片(chunk)策略解读
人工智能·chunk·切片·rag·ai应用开发工程师
Loo国昌1 天前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
Sarvartha1 天前
LangChain 入门核心知识学习笔记
笔记·学习·langchain
递归尽头是星辰1 天前
大模型与向量检索的融合:从核心原理到 Spring AI 落地
人工智能·大模型·向量检索·rag·spring ai·向量库
laplace01231 天前
大模型整个训练流程
人工智能·深度学习·embedding·agent·rag
勇气要爆发1 天前
Docker+Ollama+LangChain:从零搭建企业级“隐私优先”本地 RAG 知识库 (附源码)
docker·容器·langchain·lora·rag·ollama·llama 3
沛沛老爹1 天前
Web开发者转型AI安全实战:Agent Skills敏感数据脱敏架构设计
java·开发语言·人工智能·安全·rag·skills