检索增强生成RAG with LangChain、OpenAI and FAISS

参考:RAG with LangChain --- BGE documentation

安装依赖

bash 复制代码
pip install langchain_community langchain_openai langchain_huggingface faiss-cpu pymupdf

注册OpenAI key

API keys - OpenAI APIhttps://platform.openai.com/api-keys

完整代码和注释

LangChainDemo.py

python 复制代码
# For openai key
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"

# 1. 初始化OpenAI模型
from langchain_openai.chat_models import ChatOpenAI

llm = ChatOpenAI(model_name="gpt-4o-mini")

# 测试OpenAI调用
response = llm.invoke("What does M3-Embedding stands for?")
print(response.content)

# 2. 加载PDF文档
from langchain_community.document_loaders import PyPDFLoader

# Or download the paper and put a path to the local file instead
loader = PyPDFLoader("https://arxiv.org/pdf/2402.03216")
docs = loader.load()
print(docs[0].metadata)

# 3. 分割文本
from langchain.text_splitter import RecursiveCharacterTextSplitter

# initialize a splitter
splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,    # Maximum size of chunks to return
    chunk_overlap=150,  # number of overlap characters between chunks
)

# use the splitter to split our paper
corpus = splitter.split_documents(docs)
print("分割后文档片段数:", len(corpus))

# 4. 初始化嵌入模型
from langchain_huggingface.embeddings import HuggingFaceEmbeddings

embedding_model = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5",
encode_kwargs={"normalize_embeddings": True})

# 5. 构建向量数据库
from langchain_community.vectorstores import FAISS

vectordb = FAISS.from_documents(corpus, embedding_model)

# (optional) save the vector database to a local directory
# 保存向量库(确保目录权限)
if not os.path.exists("vectorstore.db"):
    vectordb.save_local("vectorstore.db")
print("向量数据库已保存")

# 6. 创建检索链
from langchain_core.prompts import ChatPromptTemplate

template = """
You are a Q&A chat bot.
Use the given context only, answer the question.

<context>
{context}
</context>

Question: {input}
"""

# Create a prompt template
prompt = ChatPromptTemplate.from_template(template)

from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain

doc_chain = create_stuff_documents_chain(llm, prompt)
# Create retriever for later use
retriever = vectordb.as_retriever(search_kwargs={"k": 3})  # 调整检索数量
chain = create_retrieval_chain(retriever, doc_chain)

# 7. 执行查询
response = chain.invoke({"input": "What does M3-Embedding stands for?"})

# print the answer only
print("\n答案:", response['answer'])

运行

bash 复制代码
python LangChainDemo.py

结果

python 复制代码
M3-Embedding refers to "Multimodal, Multi-Task, and Multi-Lingual" embedding techniques that integrate information from multiple modalities (such as text, images, and audio), support multiple tasks (like classification, generation, or translation), and can operate across multiple languages. This approach helps in building versatile models capable of understanding and generating information across various contexts and formats.

If you are looking for a specific context or application of M3-Embedding, please provide more details!
{'producer': 'pdfTeX-1.40.25', 'creator': 'LaTeX with hyperref', 'creationdate': '2024-07-01T00:26:51+00:00', 'author': '', 'keywords': '', 'moddate': '2024-07-01T00:26:51+00:00', 'ptex.fullbanner': 'This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5', 'subject': '', 'title': '', 'trapped': '/False', 'source': 'https://arxiv.org/pdf/2402.03216', 'total_pages': 18, 'page': 0, 'page_label': '1'}
分割后文档片段数: 87
向量数据库已保存

答案: M3-Embedding stands for Multi-Linguality, Multi-Functionality, and Multi-Granularity.
相关推荐
ChinaRainbowSea14 小时前
9. LangChain4j + 整合 Spring Boot
java·人工智能·spring boot·后端·spring·langchain·ai编程
玲小珑17 小时前
LangChain.js 完全开发手册(八)Agent 智能代理系统开发
前端·langchain·ai编程
RainbowSea1 天前
10. LangChain4j + 持久化实操详细说明
langchain·llm·ai编程
RainbowSea1 天前
9. LangChain4j + 整合 Spring Boot
langchain·llm·ai编程
kunwen1232 天前
机器学习、深度学习
rnn·langchain·cnn·transformer·langgraph
Awesome Baron3 天前
《Learning Langchain》阅读笔记13-Agent(1):Agent Architecture
笔记·langchain·llm
coder_pig3 天前
👦抠腚男孩的AI学习之旅 | 7、LangChain (三) - 实战:知识库问答机器人 (RAG )
langchain·aigc·ai编程
阿加犀智能3 天前
使用Langchain生成本地rag知识库并搭载大模型
服务器·python·langchain
乔巴先生244 天前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
AI Echoes4 天前
LLMOps平台:开源项目LMForge = GPTs + Coze
人工智能·python·langchain·开源·agent