检索增强生成RAG with LangChain、OpenAI and FAISS

参考:RAG with LangChain --- BGE documentation

安装依赖

bash 复制代码
pip install langchain_community langchain_openai langchain_huggingface faiss-cpu pymupdf

注册OpenAI key

API keys - OpenAI APIhttps://platform.openai.com/api-keys

完整代码和注释

LangChainDemo.py

python 复制代码
# For openai key
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"

# 1. 初始化OpenAI模型
from langchain_openai.chat_models import ChatOpenAI

llm = ChatOpenAI(model_name="gpt-4o-mini")

# 测试OpenAI调用
response = llm.invoke("What does M3-Embedding stands for?")
print(response.content)

# 2. 加载PDF文档
from langchain_community.document_loaders import PyPDFLoader

# Or download the paper and put a path to the local file instead
loader = PyPDFLoader("https://arxiv.org/pdf/2402.03216")
docs = loader.load()
print(docs[0].metadata)

# 3. 分割文本
from langchain.text_splitter import RecursiveCharacterTextSplitter

# initialize a splitter
splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,    # Maximum size of chunks to return
    chunk_overlap=150,  # number of overlap characters between chunks
)

# use the splitter to split our paper
corpus = splitter.split_documents(docs)
print("分割后文档片段数:", len(corpus))

# 4. 初始化嵌入模型
from langchain_huggingface.embeddings import HuggingFaceEmbeddings

embedding_model = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5",
encode_kwargs={"normalize_embeddings": True})

# 5. 构建向量数据库
from langchain_community.vectorstores import FAISS

vectordb = FAISS.from_documents(corpus, embedding_model)

# (optional) save the vector database to a local directory
# 保存向量库(确保目录权限)
if not os.path.exists("vectorstore.db"):
    vectordb.save_local("vectorstore.db")
print("向量数据库已保存")

# 6. 创建检索链
from langchain_core.prompts import ChatPromptTemplate

template = """
You are a Q&A chat bot.
Use the given context only, answer the question.

<context>
{context}
</context>

Question: {input}
"""

# Create a prompt template
prompt = ChatPromptTemplate.from_template(template)

from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain

doc_chain = create_stuff_documents_chain(llm, prompt)
# Create retriever for later use
retriever = vectordb.as_retriever(search_kwargs={"k": 3})  # 调整检索数量
chain = create_retrieval_chain(retriever, doc_chain)

# 7. 执行查询
response = chain.invoke({"input": "What does M3-Embedding stands for?"})

# print the answer only
print("\n答案:", response['answer'])

运行

bash 复制代码
python LangChainDemo.py

结果

python 复制代码
M3-Embedding refers to "Multimodal, Multi-Task, and Multi-Lingual" embedding techniques that integrate information from multiple modalities (such as text, images, and audio), support multiple tasks (like classification, generation, or translation), and can operate across multiple languages. This approach helps in building versatile models capable of understanding and generating information across various contexts and formats.

If you are looking for a specific context or application of M3-Embedding, please provide more details!
{'producer': 'pdfTeX-1.40.25', 'creator': 'LaTeX with hyperref', 'creationdate': '2024-07-01T00:26:51+00:00', 'author': '', 'keywords': '', 'moddate': '2024-07-01T00:26:51+00:00', 'ptex.fullbanner': 'This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5', 'subject': '', 'title': '', 'trapped': '/False', 'source': 'https://arxiv.org/pdf/2402.03216', 'total_pages': 18, 'page': 0, 'page_label': '1'}
分割后文档片段数: 87
向量数据库已保存

答案: M3-Embedding stands for Multi-Linguality, Multi-Functionality, and Multi-Granularity.
相关推荐
余衫马9 天前
LangChain 文本分割器深度解析:从原理到落地应用(上)
langchain·文本分割器
Florian11 天前
Graph ⋈ Agent:Chat2Graph 如何重构 GraphRAG 范式?
知识图谱·agent·rag·graphrag·chat2graph·符号主义
5ycode11 天前
深度拆解RAGFlow分片引擎之切片实现
知识库·rag·ragflow
大千AI助手12 天前
LangChain执行引擎揭秘:RunnableConfig配置全解析
人工智能·langchain·config
精灵vector12 天前
Agent的记忆详细实现机制
python·langchain·llm
致Great12 天前
MCP出现的意义是什么?让 AI 智能体更模块化
大数据·人工智能·rag
whoarethenext12 天前
使用 C++/OpenCV 计算图像特征并用 Faiss 进行相似细节搜索
c++·opencv·faiss
少林码僧12 天前
14.2 《3小时从零搭建企业级LLaMA3语言助手:GitHub配置+私有化模型集成全实战》
人工智能·机器学习·语言模型·langchain
Jayin_chan13 天前
dify本地部署及添加ollama模型(ubuntu24.04)
ubuntu·ai大模型·dify·rag·本地部署
dundunmm13 天前
【一天一个知识点】RAG构架的第四步:设计问答链路与响应控制(Response Chain & Output Control)
大模型·rag·检索