Milvus部署在T4 GPU上,Dify检索性能可以提升多少?

通常情况下,Dify检索知识库在秒级别,通常需要1-2秒,而部署在T4 GPU上则可以达到毫秒级别,通常在几十毫秒。

部署配置说明一下,这很关键,直接关系到是否可以正常访问milvus。

在.env环境变量中,使用默认的配置,一直连接失败,如:MILVUS_URI=http://host.docker.internal:19530

应该修改为宿主服务的IP,比如:MILVUS_URI=http://172.18.0.8:19530

另外,默认的验证false始终无效,还是要验证MILVUS_USER和MILVUS_PASSWORD,我们设置为默认的值,如:root和Milvus。

docker-compose.yaml配置中,使用的是milvusdb/milvus:v2.5.0-beta-gpu。

XML 复制代码
milvus-standalone:
    container_name: milvus-standalone
    image: milvusdb/milvus:v2.5.0-beta-gpu
    profiles:
      - milvus
    command: [ 'milvus', 'run', 'standalone' ]
    environment:
      ETCD_ENDPOINTS: ${ETCD_ENDPOINTS:-etcd:2379}
      MINIO_ADDRESS: ${MINIO_ADDRESS:-minio:9000}
      gpu.enalbe: "true"
      gpu.device_ids: "0"
      gpu.bulid_index_resouces: "16GB"
      gpu.search_resources: "16GB"
      NVIDIA_VISIBLE_DEVICES: 0
    volumes:
      - ./volumes/milvus/milvus:/var/lib/milvus
    healthcheck:
      test: [ 'CMD', 'curl', '-f', 'http://localhost:9091/healthz' ]
      interval: 30s
      start_period: 90s
      timeout: 20s
      retries: 3
    depends_on:
      - etcd
      - minio
    ports:
      - 19530:19530
      - 9091:9091
    runtime: nvidia
    networks:
      - milvus

使用DeepSeek-R1.pdf作为知识库文件进行验证。

创建一个RAG测试工作流,检索topk=7。

测试一:DeepSeek-R1

测试二:DeepSeek-R1

测试三:who are u?

测试四:who are u?

相关推荐
老友@1 天前
RAG 的诞生:为了让 AI 不再“乱编”
人工智能·搜索引擎·ai·语言模型·自然语言处理·rag
海棠AI实验室2 天前
图书馆版 RAG 系统:从馆藏到知识问答的一条完整链路
人工智能·rag·图书馆ai·知识服务
picoasis3 天前
Dify:Step 5 大模型使用的基本流程,实战中问题规避方法
dify
斯文~4 天前
【AI论文速递】RAG-GUI:轻量VLM用SFT/RSF提升GUI性能
人工智能·ai·agent·rag·ai读论文·ai论文速递
沛沛老爹5 天前
AI入门之GraphRAG企业级部署性能优化策略:从索引到检索的全链路提效实践
人工智能·ai·性能优化·rag·入门知识·graphrag·lightrag
油炸小波7 天前
02-AI应用开发平台Dify
人工智能·python·dify·coze
菠菠萝宝7 天前
【Java手搓RAGFlow】-1- 环境准备
java·开发语言·人工智能·llm·openai·rag
菠菠萝宝7 天前
【Java手搓RAGFlow】-3- 用户认证与权限管理
java·开发语言·人工智能·llm·openai·qwen·rag
loong_XL8 天前
MCP实现Agentic RAG server案例
知识库·mcp