Milvus部署在T4 GPU上,Dify检索性能可以提升多少?

通常情况下,Dify检索知识库在秒级别,通常需要1-2秒,而部署在T4 GPU上则可以达到毫秒级别,通常在几十毫秒。

部署配置说明一下,这很关键,直接关系到是否可以正常访问milvus。

在.env环境变量中,使用默认的配置,一直连接失败,如:MILVUS_URI=http://host.docker.internal:19530

应该修改为宿主服务的IP,比如:MILVUS_URI=http://172.18.0.8:19530

另外,默认的验证false始终无效,还是要验证MILVUS_USER和MILVUS_PASSWORD,我们设置为默认的值,如:root和Milvus。

docker-compose.yaml配置中,使用的是milvusdb/milvus:v2.5.0-beta-gpu。

XML 复制代码
milvus-standalone:
    container_name: milvus-standalone
    image: milvusdb/milvus:v2.5.0-beta-gpu
    profiles:
      - milvus
    command: [ 'milvus', 'run', 'standalone' ]
    environment:
      ETCD_ENDPOINTS: ${ETCD_ENDPOINTS:-etcd:2379}
      MINIO_ADDRESS: ${MINIO_ADDRESS:-minio:9000}
      gpu.enalbe: "true"
      gpu.device_ids: "0"
      gpu.bulid_index_resouces: "16GB"
      gpu.search_resources: "16GB"
      NVIDIA_VISIBLE_DEVICES: 0
    volumes:
      - ./volumes/milvus/milvus:/var/lib/milvus
    healthcheck:
      test: [ 'CMD', 'curl', '-f', 'http://localhost:9091/healthz' ]
      interval: 30s
      start_period: 90s
      timeout: 20s
      retries: 3
    depends_on:
      - etcd
      - minio
    ports:
      - 19530:19530
      - 9091:9091
    runtime: nvidia
    networks:
      - milvus

使用DeepSeek-R1.pdf作为知识库文件进行验证。

创建一个RAG测试工作流,检索topk=7。

测试一:DeepSeek-R1

测试二:DeepSeek-R1

测试三:who are u?

测试四:who are u?

相关推荐
TGITCIC7 小时前
LangChain入门(十四)- Agentic RAG 的正确打开方式:用 LangChain 实现“有思考、可解释、不遗漏”的检索增强问答
langchain·rag·ai agent·agentic·智能体开发·rag增强检索·agentic flow
高铭杰7 小时前
LlamaIndex实用入门案例(可执行)
agent·llvm·rag·llamaindex
TGITCIC11 小时前
LangChain入门(十三)- 6步实操Agent落地大法
langchain·agent·rag·ai agent·ai开发·agent开发·ai智能体开发
安如衫1 天前
从 OCR 到多模态 VLM Agentic AI:智能文档问答的范式转移全解
人工智能·ocr·agent·cv·rag·vlm
领航猿1号2 天前
Langchain 1.0.2 从入门到精通(含基础、RAG、Milvus、Ollama、MCP、Agents)
langchain·agent·milvus·rag·mcp·langchain 1.0
孙琦Ray2 天前
GitHub开源项目月报 · 2026年1月 · 开源AI代理热榜解读
开源·软件开发·多模态·rag·知识管理·ai代理·终端桌面
胡西风_foxww2 天前
ObsidianAI_学习一个陌生知识领域_建立学习路径和知识库框架_写一本书
人工智能·笔记·学习·知识库·obsidian·notebooklm·写一本书
kicikng2 天前
基于 Coze 数据库的智能体中枢:智能体来了(西南总部)如何构建 AI Agent 指挥官
rag·ai agent·智能调度·智能体中枢·coze数据库·大模型应用层·数字基础设施
云草桑2 天前
.net AI开发04 第八章 引入RAG知识库与文档管理核心能力及事件总线
数据库·人工智能·microsoft·c#·asp.net·.net·rag
千桐科技2 天前
qKnow 知识平台商业版 v2.6.1 正式发布:移除对第三方 LLM 应用框架的依赖,一次真正走向自主可控的里程碑升级
大模型·知识图谱·图数据库·知识库·rag·qknow·知识平台