OpenCV图像拼接(2)基于羽化(feathering)技术的图像融合算法拼接类cv::detail::FeatherBlender

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::detail::FeatherBlender 是 OpenCV 中用于图像拼接的一个类,它属于 stitching 模块的一部分。这个类实现了基于羽化(feathering)技术的图像融合算法,用于平滑地混合重叠区域中的图像,从而生成无缝的全景图。

主要特点

  • 羽化技术:通过在图像的重叠部分应用加权平均来实现平滑过渡,权重通常是根据距离边缘的距离来确定的。
  • 简单且高效:适用于大多数基本的图像拼接需求,尽管可能不如一些更复杂的缝合方法(如基于图割的缝合器)那样精确,但它的计算效率更高。

成员函数

  • 构造函数

    FeatherBlender(double sharpness = 0.01): 构造函数允许指定羽化的锐度(sharpness),默认值为0.01。锐度参数影响羽化效果的平滑程度,较小的值产生更广泛的羽化。

  • setSharpness

    void setSharpness(double sharpness): 设置羽化的锐度。较高的锐度值会导致较窄的羽化区域,反之亦然。

  • prepare

    void prepare(const std::vector &corners, const std::vector &sizes): 根据输入图像的角点位置和尺寸准备羽化混合器。这个函数通常在开始拼接过程前调用,以便确定如何处理每个图像的重叠区域。

  • apply

    void apply(int idx, const Mat &img, const Mat &mask, Mat &result_mask): 将指定索引的图像应用到结果中,并根据当前设置的羽化参数进行混合。idx 表示要应用的图像的索引,img 是该图像,mask 是对应的掩码,而 result_mask 是输出结果的掩码。

  • blend

    void blend(const std::vector &src, const std::vector &masks, Mat &dst): 执行最终的图像混合操作。src 包含所有待拼接的源图像,masks 包含对应于每张源图像的掩码,dst 是输出的拼接后的图像。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/stitching.hpp>

int main() {
    // 加载图像
    std::vector<cv::Mat> imgs;
    imgs.push_back(cv::imread("/media/dingxin/data/study/OpenCV/sources/images/stich1.png"));
    imgs.push_back(cv::imread("/media/dingxin/data/study/OpenCV/sources/images/stich2.png"));
    if (imgs[0].empty() || imgs[1].empty()) {
        std::cerr << "Error loading images!" << std::endl;
        return -1;
    }

    // 创建并配置 FeatherBlender
    double feather_width = 5; // 羽化宽度
    cv::Ptr<cv::detail::FeatherBlender> blender = cv::makePtr<cv::detail::FeatherBlender>(feather_width);

    // 创建拼接器,并设置为使用 FeatherBlender
    cv::Ptr<cv::Stitcher> stitcher = cv::Stitcher::create(cv::Stitcher::PANORAMA);
    stitcher->setBlender(blender);

    // 执行拼接
    cv::Mat pano;
    cv::Stitcher::Status status = stitcher->stitch(imgs, pano);
    if (status != cv::Stitcher::OK) {
        std::cerr << "Can't stitch images, error code = " << int(status) << std::endl;
        return -1;
    }

    // 显示结果
    cv::imshow("原始图1", imgs[0]);
    cv::imshow("原始图2", imgs[1]);
    cv::imshow("Panorama", pano);
    cv::waitKey(0);
    return 0;
}

运行结果

拼接的相当完美,(o)/

相关推荐
新智元14 分钟前
o3 全网震撼实测:AGI 真来了?最强氛围编程秒杀人类,却被曝捏造事实
人工智能·openai
新智元19 分钟前
何恺明 ResNet 登顶,Transformer 加冕!Nature 独家揭秘 25 篇高被引论文
人工智能·openai
.普通人21 分钟前
算法基础(以acwing讲述顺序为主,结合自己理解,持续更新中...)
c++·算法
brzhang25 分钟前
为什么 A2A 和 MCP 缺一不可?
前端·后端·算法
strive-debug33 分钟前
上篇:《排序算法的奇妙世界:如何让数据井然有序?》
数据结构·算法·排序算法
新智元38 分钟前
OpenAI 震撼发布 o3/o4-mini,直逼视觉推理巅峰!首用图像思考,十倍算力爆表
人工智能·openai
徒步青云38 分钟前
七大排序算法及其优化
算法·排序算法
newxtc1 小时前
【随行付-注册安全分析报告-无验证方式导致隐患】
人工智能·安全·网易易盾·极验
计算所陈老师1 小时前
基于论文的大模型应用:基于SmartETL的arXiv论文数据接入与预处理(二)
人工智能·个人开发·信息抽取
蔡蓝1 小时前
jwt的无感刷新
算法·哈希算法