OpenCV中距离公式

一、各类距离公式总结

常见距离公式

欧氏距离

**曼哈顿距离(L1)**‌:

**切比雪夫距离(Chessboard)**‌:

1、点与点距离(欧氏距离)
  1. 二维空间

    设两点坐标为 P1(x1,y1)、P2(x2,y2),其距离为:

  2. 三维空间

    设两点坐标为 P1(x1,y1,z1)、P2(x2,y2,z2),距离公式为:

2、点与直线距离
  1. 二维直线

    已知直线方程 Ax+By+C=0,点 P(x0,y0)P(x0​,y0​),距离公式为:

  2. 三维直线

    若直线由参数方程表示,可通过向量叉乘计算。设直线上一点 M,方向向量 ,点 P 到直线的距离为:

3、点与平面距离

三维空间

已知平面方程 Ax+By+Cz+D=0Ax+By+Cz+D=0,点 P(x0,y0,z0)P(x0​,y0​,z0​),距离公式为:

4、点与不规则曲面距离

不规则曲面通常无统一解析式,需采用以下方法近似计算:

  1. ‌数值优化‌:通过迭代算法(如梯度下降)寻找曲面上与点距离最小的位置‌。
  2. ‌参数化投影‌:若曲面可参数化,将点投影至参数空间求解‌。
  3. ‌离散逼近‌:将曲面离散为网格,计算点到各网格面的最小距离‌。

二、OpenCV距离公式

1. 点与点之间的距离

在二维或三维空间中,计算两个点之间的欧氏距离是最直接的。

复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <cmath>
 
double distancePointToPoint(const cv::Point& p1, const cv::Point& p2) {
    return std::sqrt(std::pow(p2.x - p1.x, 2) + std::pow(p2.y - p1.y, 2));
}
 
int main() {
    cv::Point p1(1, 2);
    cv::Point p2(4, 6);
    
// 方法1:直接利用公式计算
    std::cout << "Distance: " << distancePointToPoint(p1, p2) << std::endl;

// 方法2:使用cv::norm函数  欧氏距离
double distance = cv::norm(p2-p1, cv::NORM_L2);

//方法2:使用cv::norm函数  曼哈顿距离
double l1_distance = cv::norm(pt2 - pt1, cv::NORM_L1);

//方法2:使用cv::norm函数  切比雪夫距离
double chessboard_distance = cv::norm(pt2 - pt1, cv::NORM_INF);

   
return 0;
}

2. 点到直线的距离

点到直线的距离可以通过多种方式计算,这里介绍一种常见的方法,使用点到直线的垂直距离公式。假设直线由两点确定(A和B),或者通过一个点和斜率(y = mx + c)。

使用两点定义直线:
复制代码
double distancePointToLine(const cv::Point& p, const cv::Point& A, const cv::Point& B) {
    double numerator = std::abs((B.y - A.y) * p.x - (B.x - A.x) * p.y + B.x * A.y - A.x * B.y);
    double denominator = std::sqrt(std::pow(B.y - A.y, 2) + std::pow(B.x - A.x, 2));
    return numerator / denominator;
}
使用点和斜率定义直线:
复制代码
double distancePointToLine(const cv::Point& p, double m, double c) { // y = mx + c
    return std::abs(m * p.x - p.y + c) / std::sqrt(m * m + 1);
}

3. 点到面的距离

点到面的距离计算涉及到三维空间中的点、直线和平面。在三维空间中,一个平面可以通过一个点和法向量来定义。点到平面的距离可以通过以下公式计算:

复制代码
double distancePointToPlane(const cv::Point3f& p, const cv::Point3f& planePoint, const cv::Vec3f& normal) {
    return std::abs(normal.dot(p - planePoint)); // 使用OpenCV的Vec3f的dot()方法计算点积并取绝对值
}

示例代码:

复制代码
int main() {
    cv::Point p(3, 3);
    cv::Point A(1, 1), B(4, 4); // 两点定义直线AB
    std::cout << "Distance from point to line: " << distancePointToLine(p, A, B) << std::endl;
    
    cv::Point3f point3d(2, 2, 2); // 三维点
    cv::Point3f planePoint(0, 0, 0); // 平面上的一点
    cv::Vec3f normal(0, 0, 1); // 法向量,例如z轴方向上的单位向量 (0, 0, 1)
    std::cout << "Distance from point to plane: " << distancePointToPlane(point3d, planePoint, normal) << std::endl;
    return 0;
}

4.**图像的距离变换(Distance Transform)**‌

用于计算二值图像中每个像素到最近背景像素的距离。OpenCV支持多种距离类型:

  • DIST_L1:曼哈顿距离(快速计算)

  • DIST_L2:欧氏距离(精确计算)

  • DIST_C:棋盘距离(切比雪夫距离)

    复制代码
    cv::Mat binaryImage; // 输入二值图像(0表示背景,非0表示前景)
    cv::Mat distImage;
    
    cv::distanceTransform(binaryImage, distImage, cv::DIST_L2, 5);

5. 轮廓/形状之间的距离

使用 cv::matchShapes() 计算两个形状的相似性(基于Hu矩):

复制代码
double similarity = cv::matchShapes(contour1, contour2, cv::CONTOURS_MATCH_I1, 0);
相关推荐
GAOJ_K15 小时前
滚珠花键的无预压、间隙调整与过盈配合“场景适配型”
人工智能·科技·机器人·自动化·制造
ai_xiaogui15 小时前
【开源探索】Panelai:重新定义AI服务器管理面板,助力团队私有化算力部署与模型运维
人工智能·开源·私有化部署·docker容器化·panelai·ai服务器管理面板·comfyui集群管理
源于花海15 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
king of code porter15 小时前
百宝箱企业版搭建智能体应用-平台概述
人工智能·大模型·智能体
愚公搬代码15 小时前
【愚公系列】《AI短视频创作一本通》004-AI短视频的准备工作(创作AI短视频的基本流程)
人工智能·音视频
物联网软硬件开发-轨物科技15 小时前
【轨物洞见】告别“被动维修”!预测性运维如何重塑老旧电站的资产价值?
运维·人工智能
电商API_1800790524715 小时前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
梁辰兴16 小时前
百亿美元赌注变数,AI军备竞赛迎来转折点?
人工智能·ai·大模型·openai·英伟达·梁辰兴·ai军备竞赛
PaperRed ai写作降重助手16 小时前
智能写作ai论文生成软件推荐
人工智能·aigc·ai写作·智能降重·paperred
龙山云仓16 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene