OpenCV中距离公式

一、各类距离公式总结

常见距离公式

欧氏距离

**曼哈顿距离(L1)**‌:

**切比雪夫距离(Chessboard)**‌:

1、点与点距离(欧氏距离)
  1. 二维空间

    设两点坐标为 P1(x1,y1)、P2(x2,y2),其距离为:

  2. 三维空间

    设两点坐标为 P1(x1,y1,z1)、P2(x2,y2,z2),距离公式为:

2、点与直线距离
  1. 二维直线

    已知直线方程 Ax+By+C=0,点 P(x0,y0)P(x0​,y0​),距离公式为:

  2. 三维直线

    若直线由参数方程表示,可通过向量叉乘计算。设直线上一点 M,方向向量 ,点 P 到直线的距离为:

3、点与平面距离

三维空间

已知平面方程 Ax+By+Cz+D=0Ax+By+Cz+D=0,点 P(x0,y0,z0)P(x0​,y0​,z0​),距离公式为:

4、点与不规则曲面距离

不规则曲面通常无统一解析式,需采用以下方法近似计算:

  1. ‌数值优化‌:通过迭代算法(如梯度下降)寻找曲面上与点距离最小的位置‌。
  2. ‌参数化投影‌:若曲面可参数化,将点投影至参数空间求解‌。
  3. ‌离散逼近‌:将曲面离散为网格,计算点到各网格面的最小距离‌。

二、OpenCV距离公式

1. 点与点之间的距离

在二维或三维空间中,计算两个点之间的欧氏距离是最直接的。

复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <cmath>
 
double distancePointToPoint(const cv::Point& p1, const cv::Point& p2) {
    return std::sqrt(std::pow(p2.x - p1.x, 2) + std::pow(p2.y - p1.y, 2));
}
 
int main() {
    cv::Point p1(1, 2);
    cv::Point p2(4, 6);
    
// 方法1:直接利用公式计算
    std::cout << "Distance: " << distancePointToPoint(p1, p2) << std::endl;

// 方法2:使用cv::norm函数  欧氏距离
double distance = cv::norm(p2-p1, cv::NORM_L2);

//方法2:使用cv::norm函数  曼哈顿距离
double l1_distance = cv::norm(pt2 - pt1, cv::NORM_L1);

//方法2:使用cv::norm函数  切比雪夫距离
double chessboard_distance = cv::norm(pt2 - pt1, cv::NORM_INF);

   
return 0;
}

2. 点到直线的距离

点到直线的距离可以通过多种方式计算,这里介绍一种常见的方法,使用点到直线的垂直距离公式。假设直线由两点确定(A和B),或者通过一个点和斜率(y = mx + c)。

使用两点定义直线:
复制代码
double distancePointToLine(const cv::Point& p, const cv::Point& A, const cv::Point& B) {
    double numerator = std::abs((B.y - A.y) * p.x - (B.x - A.x) * p.y + B.x * A.y - A.x * B.y);
    double denominator = std::sqrt(std::pow(B.y - A.y, 2) + std::pow(B.x - A.x, 2));
    return numerator / denominator;
}
使用点和斜率定义直线:
复制代码
double distancePointToLine(const cv::Point& p, double m, double c) { // y = mx + c
    return std::abs(m * p.x - p.y + c) / std::sqrt(m * m + 1);
}

3. 点到面的距离

点到面的距离计算涉及到三维空间中的点、直线和平面。在三维空间中,一个平面可以通过一个点和法向量来定义。点到平面的距离可以通过以下公式计算:

复制代码
double distancePointToPlane(const cv::Point3f& p, const cv::Point3f& planePoint, const cv::Vec3f& normal) {
    return std::abs(normal.dot(p - planePoint)); // 使用OpenCV的Vec3f的dot()方法计算点积并取绝对值
}

示例代码:

复制代码
int main() {
    cv::Point p(3, 3);
    cv::Point A(1, 1), B(4, 4); // 两点定义直线AB
    std::cout << "Distance from point to line: " << distancePointToLine(p, A, B) << std::endl;
    
    cv::Point3f point3d(2, 2, 2); // 三维点
    cv::Point3f planePoint(0, 0, 0); // 平面上的一点
    cv::Vec3f normal(0, 0, 1); // 法向量,例如z轴方向上的单位向量 (0, 0, 1)
    std::cout << "Distance from point to plane: " << distancePointToPlane(point3d, planePoint, normal) << std::endl;
    return 0;
}

4.**图像的距离变换(Distance Transform)**‌

用于计算二值图像中每个像素到最近背景像素的距离。OpenCV支持多种距离类型:

  • DIST_L1:曼哈顿距离(快速计算)

  • DIST_L2:欧氏距离(精确计算)

  • DIST_C:棋盘距离(切比雪夫距离)

    复制代码
    cv::Mat binaryImage; // 输入二值图像(0表示背景,非0表示前景)
    cv::Mat distImage;
    
    cv::distanceTransform(binaryImage, distImage, cv::DIST_L2, 5);

5. 轮廓/形状之间的距离

使用 cv::matchShapes() 计算两个形状的相似性(基于Hu矩):

复制代码
double similarity = cv::matchShapes(contour1, contour2, cv::CONTOURS_MATCH_I1, 0);
相关推荐
Qdgr_3 分钟前
价值实证:数字化转型标杆案例深度解析
大数据·数据库·人工智能
c++服务器开发6 分钟前
一文详解Character AI:实用指南+ ChatGPT、Gemini对比分析
人工智能·chatgpt
hanniuniu137 分钟前
AI时代API挑战加剧,API安全厂商F5护航企业数字未来
人工智能·安全
nicepainkiller44 分钟前
anchor 智能合约案例3 之 journal
人工智能·智能合约·solana·anchor
nicepainkiller1 小时前
anchor 智能合约案例2 之 vote
人工智能·智能合约·solana·anchor
孤水寒月1 小时前
给自己网站增加一个免费的AI助手,纯HTML
前端·人工智能·html
Akttt1 小时前
【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
人工智能·深度学习·计算机视觉·text2img
大模型服务器厂商1 小时前
武汉大学机器人学院启航:一场颠覆性的产教融合实验,如何重塑中国智造未来?
人工智能
wx_ywyy67981 小时前
推客系统小程序终极指南:从0到1构建自动裂变增长引擎,实现业绩10倍增长!
大数据·人工智能·短剧·短剧系统·推客系统·推客小程序·推客系统开发
说私域2 小时前
基于开源AI智能客服、AI智能名片与S2B2C商城小程序的微商服务质量提升路径研究
人工智能·小程序·开源