【实战】deepseek数据分类用户评论数据

在平时的工作中,我们会遇到数据分类的情况,比如将一些文本划分为各个标签。如果人工分类这块的工作量将是非常大,而且分类数据的准确性也不高。我们需要用到一些工具来实现。提高效率的同时也提高准确率。

1.示例数据

|------|-----------------|------|--------------------------|
| 用户ID | 时间戳 | 评论场景 | 评论内容 |
| U001 | 2023/10/1 9:05 | 电商购物 | "刚收到快递,包装完好,实物比图片还漂亮!" |
| U001 | 2023/10/3 14:30 | 电商购物 | "用了两天发现电池续航很差,和宣传不符,失望。" |
| U001 | 2023/10/5 11:15 | 客服沟通 | "客服很快解决了问题,补偿了优惠券,态度点赞!" |
| U002 | 2023/10/2 18:20 | 社交媒体 | "今天和朋友聚餐,餐厅氛围超棒,但菜品有点咸。" |
| U003 | 2023/10/4 10:00 | 旅行预订 | "航班延误了3小时,机场服务混乱,体验极差!" |
| U003 | 2023/10/4 15:45 | 旅行预订 | "酒店免费升级了海景房,意外惊喜!" |

2.数据分析

数据清洗

通过python工具去除文字中的特殊符号。

安装依赖

python 复制代码
pip install pandas snownlp matplotlib openpyxl jinja2

代码实战

python 复制代码
import pandas as pd

from snownlp import SnowNLP

import matplotlib.pyplot as plt

from datetime import datetime



# 1. 数据加载

df = pd.read_excel("数据分析.xlsx", sheet_name="Sheet1")



# 2. 情绪分析函数(使用SnowNLP中文情感分析)

def classify_sentiment(text):

    score = SnowNLP(text).sentiments

    if score > 0.6:

        return ("积极", score)

    elif score < 0.4:

        return ("消极", score)

    else:

        return ("中性", score)



# 应用情绪分类

df[["情绪标签", "情绪强度"]] = df["评论内容"].apply(

    lambda x: pd.Series(classify_sentiment(x))

)



# 3. 生成统计报告

report = df.groupby("情绪标签").agg(

    评论数量=("用户ID", "count"),

    用户数=("用户ID", pd.Series.nunique),

    平均情绪强度=("情绪强度", "mean")

).reset_index()



# 4. 用户情绪轨迹分析

user_timelines = []

for uid, group in df.groupby("用户ID"):

    timeline = group.sort_values("时间戳").reset_index(drop=True)

    user_timelines.append({

        "用户ID": uid,

        "情绪变化序列": " → ".join(timeline["情绪标签"]),

        "关键转折点": timeline.iloc[[0, -1]][["时间戳", "情绪标签"]].to_dict("records")

    })

    

# 5. 可视化生成

# 设置matplotlib的字体配置

plt.rcParams['axes.unicode_minus'] = False  # 解决负号 '-' 显示为方块的问题

plt.rcParams['font.family'] = 'Kaiti SC'  # 可以替换为其他字体

plt.figure(figsize=(12, 6))

# 情绪分布饼图



ax1 = plt.subplot(121)

df["情绪标签"].value_counts().plot.pie(autopct="%1.1f%%", ax=ax1)

ax1.set_title("情绪分布比例")



# 时间线示例(U001)

ax2 = plt.subplot(122)

u001 = df[df["用户ID"] == "U001"].sort_values("时间戳")

ax2.plot(u001["时间戳"], u001["情绪强度"], marker="o", linestyle="--")

ax2.set_title("U001情绪波动趋势")

plt.xticks(rotation=45)

plt.tight_layout()

plt.savefig("sentiment_analysis.png", dpi=300)



# 6. 导出报告

with pd.ExcelWriter("情绪分析报告.xlsx") as writer:

    df.to_excel(writer, sheet_name="原始数据+情绪标注", index=False)

    pd.DataFrame(report).to_excel(writer, sheet_name="统计摘要", index=False)

    pd.DataFrame(user_timelines).to_excel(writer, sheet_name="用户轨迹", index=False)



print("分析完成!生成文件:情绪分析报告.xlsx 和 sentiment_analysis.png")

生成文件

原始数据+情绪标注

统计摘要

用户分析

分析饼图

效率提升

目前模型如果在大数据下会比较慢,需要更换模型

使用HuggingFace中文模型(需GPU支持)

python 复制代码
from transformers import pipeline

classifier = pipeline("text-classification", model="uer/roberta-base-finetuned-jd-binary-chinese")

实时监控集成

示例:Flask API端点

python 复制代码
from flask import Flask, request

app = Flask(__name__)



@app.route("/predict", methods=["POST"])

def predict():

    text = request.json["text"]

    return {"sentiment": classify_sentiment(text)}

动态阈值调整

基于历史数据自动校准阈值

python 复制代码
def auto_threshold(df):

    q_low = df["情绪强度"].quantile(0.3)

    q_high = df["情绪强度"].quantile(0.7)

    return q_low, q_high
相关推荐
要努力啊啊啊1 小时前
YOLOv1 技术详解:正负样本划分与置信度设计
人工智能·深度学习·yolo·计算机视觉·目标跟踪
vlln2 小时前
【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
人工智能·深度学习·神经网络·搜索引擎·transformer
sky丶Mamba3 小时前
如何编写高效的Prompt:从入门到精通
人工智能·prompt
chilavert3184 小时前
深入剖析AI大模型:Prompt 开发工具与Python API 调用与技术融合
人工智能·python·prompt
科技林总5 小时前
支持向量机:在混沌中划出最强边界
人工智能
陈佬昔没带相机5 小时前
基于 open-webui 搭建企业级知识库
人工智能·ollama·deepseek
Mallow Flowers5 小时前
Python训练营-Day31-文件的拆分和使用
开发语言·人工智能·python·算法·机器学习
AntBlack6 小时前
Python : AI 太牛了 ,撸了两个 Markdown 阅读器 ,谈谈使用感受
前端·人工智能·后端
leo__5207 小时前
matlab实现非线性Granger因果检验
人工智能·算法·matlab
struggle20257 小时前
Burn 开源程序是下一代深度学习框架,在灵活性、效率和可移植性方面毫不妥协
人工智能·python·深度学习·rust