【极速版 -- 大模型入门到进阶】GPT + Gradio 聊天机器人从 0 到 1

文章目录

    • [🌊 环境准备](#🌊 环境准备)
    • [🌊 配置 API 密钥](#🌊 配置 API 密钥)
    • [🌊 定义与 GPT 的对话函数,支持多轮对话](#🌊 定义与 GPT 的对话函数,支持多轮对话)
    • [🌊 使用 Gradio 创建界面](#🌊 使用 Gradio 创建界面)
    • [🌊 完整代码 & 结果展示](#🌊 完整代码 & 结果展示)

在这个教程中,我们将使用 OpenAI 的 GPT 模型和 Gradio 来创建一个聊天机器人。Gradio 是一个非常简单的 Python 库,可以快速创建交互式界面,让我们与 AI 模型进行对话。让我们一起开始吧!

🌊 环境准备

首先,确保你已经安装了 💻 以下 Python 库 openai, gradio

bash 复制代码
from openai import OpenAI
import gradio as gr

from typing import List, Tuple

🌊 配置 API 密钥

python3 复制代码
openai.api_key = 'your-api-key-here'  # 在这里插入你的 API 密钥 🔑

🌊 定义与 GPT 的对话函数,支持多轮对话

python3 复制代码
def reset() -> List:
    return []

def interact(chatbot: List[Dict], user_input: str, temperature: float) -> List[Dict]:
    messages = []

    # 将历史对话按顺序添加到 messages 中
    for message in chatbot:
        messages.append({'role': message['role'], 'content': message['content']})

    # 将当前的 user_input 添加到 messages 的最后
    messages.append({'role': 'user', 'content': user_input})

    # 调用 OpenAI API 获取生成的回复
    response = openai.ChatCompletion.create(
        model="gpt-4",  # 你可以根据需要选择不同的模型,例如 gpt-4 或 gpt-3.5
        messages=messages,
        max_tokens=512,
        temperature=temperature,
    )

    # 获取生成的回复内容
    response_content = response['choices'][0]['message']['content']

    # 将当前的用户输入和模型的回复添加到聊天记录中
    chatbot.append({"role": "user", "content": user_input})
    chatbot.append({"role": "assistant", "content": response_content})

    return chatbot

🌊 使用 Gradio 创建界面

python3 复制代码
with gr.Blocks() as demo:
    gr.Markdown(f"# Gradio + GPT 多轮对话示例 🤖")

    chatbot = gr.Chatbot(type='messages')  # 创建聊天机器人界面
    input_textbox = gr.Textbox(label="输入你的消息 📝", value="")  # 创建文本输入框

    # 添加滑动条来调节 temperature
    temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="调整回复温度 🔥")

    # 创建按钮行
    with gr.Row():
        sent_button = gr.Button(value="发送 📤")  # 发送按钮
        reset_button = gr.Button(value="重置 🔄")  # 重置按钮

    # 设置按钮事件
    sent_button.click(interact, inputs=[chatbot, input_textbox, temperature_slider], outputs=[chatbot])
    reset_button.click(reset, outputs=[chatbot])

# 启动 Gradio 应用
demo.launch(debug=True)

🌊 完整代码 & 结果展示

python3 复制代码
import gradio as gr
from typing import List, Dict
import openai
import os


# 从环境变量中读取 API 密钥(你可以通过设置环境变量来保护 API 密钥)
openai.api_key = os.getenv('OPENAI_API_KEY')  # 确保环境变量中设置了 OPENAI_API_KEY

# 定义重置函数,清空聊天记录
def reset() -> List[Dict]:
    return []

# 定义与 GPT 的对话函数,支持多轮对话
def interact(chatbot: List[Dict], user_input: str, temperature: float) -> List[Dict]:
    messages = []

    # 将历史对话按顺序添加到 messages 中
    for message in chatbot:
        messages.append({'role': message['role'], 'content': message['content']})

    # 将当前的 user_input 添加到 messages 的最后
    messages.append({'role': 'user', 'content': user_input})

    # 调用 OpenAI API 获取生成的回复
    response = openai.ChatCompletion.create(
        model="gpt-4",  # 你可以根据需要选择不同的模型,例如 gpt-4 或 gpt-3.5
        messages=messages,
        max_tokens=512,
        temperature=temperature,
    )

    # 获取生成的回复内容
    response_content = response['choices'][0]['message']['content']

    # 将当前的用户输入和模型的回复添加到聊天记录中
    chatbot.append({"role": "user", "content": user_input})
    chatbot.append({"role": "assistant", "content": response_content})

    return chatbot

# 使用 Gradio 创建界面
with gr.Blocks() as demo:
    gr.Markdown(f"# Gradio Tutorial")
    chatbot = gr.Chatbot(type='messages')
    input_textbox = gr.Textbox(label="Input", value="")

    # 添加滑动条来调节 temperature
    temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")

    with gr.Row():
        sent_button = gr.Button(value="Send")
        reset_button = gr.Button(value="Reset")

    sent_button.click(interact, inputs=[chatbot, input_textbox, temperature_slider], outputs=[chatbot])
    reset_button.click(reset, outputs=[chatbot])

demo.launch(debug=True)

参考资料:面向每个人的生成式AI, 【李宏毅 LLM 大模型】

相关推荐
日日行不惧千万里20 分钟前
EFI 与 UEFI 详解
windows
右手 无名指30 分钟前
Github Actions工作流配置webhook推送到钉钉机器人
机器人·github·钉钉
亦复何言??1 小时前
DreamWaQ - 基于隐式地形想象的鲁棒四足机器人运动学习
学习·机器人
huwei8531 小时前
python设计通用表格类 带右键菜单
开发语言·windows·python
木卫四科技2 小时前
【技术深度】从API滥用到AI投毒:解读2026智能汽车与泛终端安全威胁新范式
机器人·汽车·evtol
数据知道2 小时前
万字详解 PostgreSQL 的详细安装方式(Linux、Windows、macOS、Docker 全平台覆盖)
linux·windows·postgresql
庞克记录2 小时前
win11电脑不识别移动固态
windows·电脑
Bruce_Liuxiaowei11 小时前
基于HTA的Meterpreter反向Shell攻击实验
网络·windows·经验分享·网络安全·渗透测试
2401_8823515212 小时前
Flutter for OpenHarmony 商城App实战 - 会员中心实现
windows·flutter
抠头专注python环境配置13 小时前
解决Windows安装PythonOCC报错:从“No module named ‘OCC’ ”到一键成功
人工智能·windows·python·3d·cad·pythonocc