设计一个基于机器学习的光伏发电功率预测模型,以Python和Scikit - learn库为例

下面为你设计一个基于机器学习的光伏发电功率预测模型,以Python和Scikit - learn库为例。此模型借助历史气象数据和光伏发电功率数据来预测未来的光伏发电功率。

模型设计思路

  1. 数据收集:收集历史气象数据(像温度、光照强度、湿度等)和对应的光伏发电功率数据。
  2. 数据预处理:对数据开展清洗、归一化等操作。
  3. 特征选择:挑选和光伏发电功率关联紧密的特征。
  4. 模型选择:选用合适的机器学习模型,例如线性回归、决策树回归、随机森林回归等。
  5. 模型训练:用训练数据对模型进行训练。
  6. 模型评估:利用测试数据对模型进行评估。

代码实现

python 复制代码
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score

# 假设我们有一个包含气象数据和光伏发电功率的数据集
# 这里使用随机生成的数据作为示例
np.random.seed(42)
n_samples = 1000
# 模拟温度、光照强度、湿度等特征
X = np.random.rand(n_samples, 3)
# 模拟光伏发电功率
y = 2 * X[:, 0] + 3 * X[:, 1] + 0.5 * X[:, 2] + np.random.randn(n_samples) * 0.1

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 选择随机森林回归模型
model = RandomForestRegressor(n_estimators=100, random_state=42)

# 模型训练
model.fit(X_train, y_train)

# 模型预测
y_pred = model.predict(X_test)

# 模型评估
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")
    

代码解释

  1. 数据生成 :运用numpy随机生成气象数据和对应的光伏发电功率数据。
  2. 数据划分 :利用train_test_split把数据划分为训练集和测试集。
  3. 数据标准化 :借助StandardScaler对特征数据进行标准化处理。
  4. 模型选择 :选取随机森林回归模型RandomForestRegressor
  5. 模型训练:使用训练数据对模型进行训练。
  6. 模型预测:运用训练好的模型对测试数据进行预测。
  7. 模型评估:使用均方误差(MSE)和决定系数(R²)对模型进行评估。

在实际应用中,你需要使用真实的历史气象数据和光伏发电功率数据,并且可能要对模型的超参数进行调优以提升模型性能。

相关推荐
EkihzniY2 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通2 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
程序员小远2 小时前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
心无旁骛~3 小时前
python多进程和多线程问题
开发语言·python
铅笔侠_小龙虾3 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
星云数灵3 小时前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
kaikaile19953 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1233 小时前
第1章_LangGraph的背景与设计哲学
人工智能
计算机毕设匠心工作室3 小时前
【python大数据毕设实战】青少年抑郁症风险数据分析可视化系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习
后端·python
计算机毕设小月哥3 小时前
【Hadoop+Spark+python毕设】智能制造生产效能分析与可视化系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql