设计一个基于机器学习的光伏发电功率预测模型,以Python和Scikit - learn库为例

下面为你设计一个基于机器学习的光伏发电功率预测模型,以Python和Scikit - learn库为例。此模型借助历史气象数据和光伏发电功率数据来预测未来的光伏发电功率。

模型设计思路

  1. 数据收集:收集历史气象数据(像温度、光照强度、湿度等)和对应的光伏发电功率数据。
  2. 数据预处理:对数据开展清洗、归一化等操作。
  3. 特征选择:挑选和光伏发电功率关联紧密的特征。
  4. 模型选择:选用合适的机器学习模型,例如线性回归、决策树回归、随机森林回归等。
  5. 模型训练:用训练数据对模型进行训练。
  6. 模型评估:利用测试数据对模型进行评估。

代码实现

python 复制代码
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score

# 假设我们有一个包含气象数据和光伏发电功率的数据集
# 这里使用随机生成的数据作为示例
np.random.seed(42)
n_samples = 1000
# 模拟温度、光照强度、湿度等特征
X = np.random.rand(n_samples, 3)
# 模拟光伏发电功率
y = 2 * X[:, 0] + 3 * X[:, 1] + 0.5 * X[:, 2] + np.random.randn(n_samples) * 0.1

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 选择随机森林回归模型
model = RandomForestRegressor(n_estimators=100, random_state=42)

# 模型训练
model.fit(X_train, y_train)

# 模型预测
y_pred = model.predict(X_test)

# 模型评估
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")
    

代码解释

  1. 数据生成 :运用numpy随机生成气象数据和对应的光伏发电功率数据。
  2. 数据划分 :利用train_test_split把数据划分为训练集和测试集。
  3. 数据标准化 :借助StandardScaler对特征数据进行标准化处理。
  4. 模型选择 :选取随机森林回归模型RandomForestRegressor
  5. 模型训练:使用训练数据对模型进行训练。
  6. 模型预测:运用训练好的模型对测试数据进行预测。
  7. 模型评估:使用均方误差(MSE)和决定系数(R²)对模型进行评估。

在实际应用中,你需要使用真实的历史气象数据和光伏发电功率数据,并且可能要对模型的超参数进行调优以提升模型性能。

相关推荐
浔川python社1 分钟前
《Python 小程序编写系列》(第一部):从零开始写一个猜数字游戏
python
说私域2 分钟前
社群经济下开源链动2+1模式AI智能名片S2B2C商城小程序的信任重构机制研究
人工智能·小程序·重构
mortimer8 分钟前
使用阿里AI模型去除背景噪音:单文件40行代码实现
python·ffmpeg·阿里巴巴
程序员爱钓鱼12 分钟前
Python编程实战——Python实用工具与库:Matplotlib数据可视化
前端·后端·python
PPT百科14 分钟前
PPT导出为图片的格式选择:JPG与PNG的区别
人工智能·经验分享·职场和发展·powerpoint·职场·效率工具
数据超市14 分钟前
快速CAD转到PPT的方法,带教程
大数据·python·科技·信息可视化·数据挖掘
aneasystone本尊15 分钟前
重温 Java 21 之作用域值
人工智能
程序员爱钓鱼15 分钟前
Python编程实战 - Python实用工具与库 - requests 与 BeautifulSoup
前端·后端·python
努力还债的学术吗喽16 分钟前
【项目】pyqt5基于python的照片整蛊项目
开发语言·python·qt
阿_旭17 分钟前
基于深度学习的车载视角路面病害检测系统【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·路面病害检测