Python全栈应用开发利器Dash 3.x新版本介绍(3)

更多Dash应用开发干货知识、案例,欢迎关注"玩转Dash"微信公众号👇

大家好我是费老师,在前两期文章中,我们针对Python生态中++强大++ 且++灵活++ 的全栈应用开发 框架Dash,介绍了其3.x新版本中的部分更新内容🧐:

而今天的文章中,我们将继续介绍Dash3.x新版本中的其他重磅💥新功能,今天要介绍的是新版本中对异步编程的新增支持。

Dash应用开发新增异步编程支持

3.1.0版本开始,得益于底层依赖的Flask当前对异步编程 较为稳定的支持,在Dash中我们可以编写异步函数形式的服务端回调函数 。终端执行下面的命令,即可完成额外异步依赖的安装:

bash 复制代码
pip install dash[async] -U

对于了解Python异步编程的朋友,可以将应用中相关的计算场景轻松改造为异步形式 ,从而大幅度降低计算耗时,下面我们举例演示:

异步形式的回调函数

针对服务端回调函数 场景,为了进行直观对比 ,我们先来看一个同步写法下的示例应用:

python 复制代码
import time
import dash
import random
from dash import html
import feffery_antd_components as fac
from dash.dependencies import Input, Output
from feffery_dash_utils.style_utils import style

app = dash.Dash(__name__)

app.layout = html.Div(
    [
        fac.AntdSpace(
            [
                fac.AntdButton(
                    "执行计算",
                    id="execute",
                    type="primary",
                    loadingChildren="计算中",
                ),
                fac.AntdText(id="result"),
            ]
        )
    ],
    style=style(padding=50),
)


def job():
    time.sleep(1)

    return random.randint(0, 100)


@app.callback(
    Output("result", "children"),
    Input("execute", "nClicks"),
    running=[[Input("execute", "loading"), True, False]],
    prevent_initial_call=True,
)
def sync_callback_demo(nClicks):
    start = time.time()

    # 模拟耗时计算任务过程
    results = [job() for _ in range(5)]

    return f"本次计算结果:{results}, 计算耗时:{round(time.time() - start, 2)} 秒"


if __name__ == "__main__":
    app.run(debug=True)

在对应的回调函数sync_callback_demo()中,我们调用了5次 具有一定模拟计算耗时的job()函数,因此每次点击按钮执行计算后,都要耗时约5秒

而在3.1.0版本之后的Dash中,我们可以使用Python中的异步编程相关写法,编写异步形式的回调函数,与前面同步形式示例做对比,异步形式示例代码如下:

python 复制代码
import time
import dash
import random
import asyncio
from dash import html
import feffery_antd_components as fac
from dash.dependencies import Input, Output
from feffery_dash_utils.style_utils import style

app = dash.Dash(__name__)

app.layout = html.Div(
    [
        fac.AntdSpace(
            [
                fac.AntdButton(
                    "执行计算",
                    id="execute",
                    type="primary",
                    loadingChildren="计算中",
                ),
                fac.AntdText(id="result"),
            ]
        )
    ],
    style=style(padding=50),
)


async def async_job():
    await asyncio.sleep(1)

    return random.randint(0, 100)


@app.callback(
    Output("result", "children"),
    Input("execute", "nClicks"),
    running=[[Input("execute", "loading"), True, False]],
    prevent_initial_call=True,
)
async def async_callback_demo(nClicks):
    start = time.time()

    # 模拟耗时计算任务过程
    coros = [async_job() for _ in range(5)]
    results = await asyncio.gather(*coros)

    return f"本次计算结果:{results}, 计算耗时:{round(time.time() - start, 2)} 秒"


if __name__ == "__main__":
    app.run(debug=True)

因为利用asyncio.gather()进行多个异步函数的整合执行,所以同样的计算操作,耗时得到有效降低,只需要约1秒

基于这项新特性,我们就可以在相关场景下进行有效的异步改造,从而提升计算效率⚡。

篇幅有限,更多新版本Dash更新相关内容,接下来的数篇文章我们继续为大家盘点,敬请期待~


以上就是本文的全部内容,对Dash应用开发感兴趣的朋友,欢迎添加微信号CNFeffery,备注"dash学习"加入我们的技术交流群,一起成长一起进步。

相关推荐
高级测试工程师欧阳8 分钟前
python中selenium怎么使用
python·pandas
BertieHuang20 分钟前
(一)深入源码,从 0 到 1 实现 Cursor
人工智能·python·程序员
以泪为证42 分钟前
WebSocket 任务分发系统代码深度分析与应用
python
jumin18061 小时前
python采用jdbc连接kerberos认证的hive
python·apache hive
Ice__Cai2 小时前
Flask 路由详解:构建灵活的 URL 映射系统
开发语言·python·flask
l1t2 小时前
DeepSeek辅助编写的将xlsx格式文件中sheet1.xml按需分别保留或去掉标签的程序
xml·python·excel·wps·xlsx
l1t2 小时前
分析xml标签属性和压缩级别对xlsx文件读取解析的影响
xml·开发语言·python·sql·duckdb
Chandler_Song3 小时前
【Python代码】谷歌专利CSV处理函数
开发语言·python·pandas
测试19986 小时前
Web自动化测试:测试用例流程设计
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
山烛10 小时前
矿物分类系统开发笔记(一):数据预处理
人工智能·python·机器学习·矿物分类