深度学习四大核心架构:神经网络(NN)、卷积神经网络(CNN)、循环神经网络(RNN)与Transformer全概述

🌰 知识点概述


🧠 核心区别对比表

特性 NN(全连接网络) CNN(卷积网络) RNN(循环网络) Transformer
输入类型 固定长度的结构化数据(如表格) 网格状数据(图像/音频) 时序数据(文本/时间序列) 长序列数据(文本/语音)
核心结构 全连接层 卷积层 + 池化层 循环单元(LSTM/GRU) 自注意力机制 + 位置编码
参数共享 ❌ 无 ✅ 卷积核共享(空间局部性) ✅ 循环权重共享(时序共享) ✅ 注意力权重动态分配
时序依赖处理 ❌ 忽略时序关系 ❌ 仅局部空间关系 ✅ 顺序处理(短期记忆依赖) 全局依赖(并行计算)
典型应用 房价预测/简单分类 图像分类/目标检测 文本生成/股票预测 机器翻译/文本摘要(如BERT)
训练效率 低效(参数爆炸) 高效(参数共享) 低效(顺序计算) 高效(并行计算)但内存消耗大
长序列处理 ❌ 不支持 ❌ 不支持 ❌ 梯度消失/遗忘早期信息 ✅ 自注意力直接关联任意位置
关键创新 基础神经元模型 局部感知/权重共享 时间步状态传递 多头注意力 + 位置编码

生活化案例理解

  1. NN

    类比 :盲人摸象,每个神经元独立感知全局特征

    局限:输入图像需展平为向量,丢失空间信息(如将28x28图片变成784维向量)

  2. CNN

    类比 :人类视觉系统,先识别边缘→形状→物体

    实战:用3x3卷积核扫描猫的图片,提取耳朵、胡须等局部特征

  3. RNN

    类比 :阅读理解,需记住前文才能理解后文

    痛点:输入句子"The cat sat on the mat",到第6个单词时可能已遗忘"cat"

  4. Transformer

    类比 :团队协作,每个单词直接关注全局上下文

    优势:处理句子"I arrived at the bank after crossing the river"时,"bank"可同时关注"river"(消除歧义)


🔑 选型指南

场景 推荐模型 理由
表格数据分类/回归 NN 结构简单,无需复杂特征提取
图像识别/目标检测 CNN 高效捕捉空间局部特征
短文本生成/时间序列预测 RNN(LSTM/GRU) 处理简单时序依赖
长文本翻译/文档摘要 Transformer 捕捉长距离依赖,并行计算高效
多模态数据(如图文匹配) Transformer+CNN 联合处理文本和图像特征
相关推荐
要努力啊啊啊32 分钟前
GQA(Grouped Query Attention):分组注意力机制的原理与实践《一》
论文阅读·人工智能·深度学习·语言模型·自然语言处理
原味奶茶_三分甜1 小时前
Qwen3高效微调
深度学习
嘻嘻哈哈OK啦4 小时前
day40打卡
人工智能·深度学习·机器学习
yzx9910138 小时前
Python开发系统项目
人工智能·python·深度学习·django
my_q9 小时前
机器学习与深度学习08-随机森林02
深度学习·随机森林·机器学习
不爱吃山楂罐头10 小时前
第三十三天打卡复习
python·深度学习
m0_6786933310 小时前
深度学习笔记25-RNN心脏病预测(Pytorch)
笔记·rnn·深度学习
蹦蹦跳跳真可爱58911 小时前
Python----目标检测(《SSD: Single Shot MultiBox Detector》论文和SSD的原理与网络结构)
人工智能·python·深度学习·神经网络·目标检测·计算机视觉
LeonDL16812 小时前
HALCON 深度学习训练 3D 图像的几种方式优缺点
人工智能·python·深度学习·3d·halcon·halcon训练3d图像·深度学习训练3d图像
只有左边一个小酒窝13 小时前
(三)动手学线性神经网络:从数学原理到代码实现
人工智能·深度学习·神经网络