深度学习四大核心架构:神经网络(NN)、卷积神经网络(CNN)、循环神经网络(RNN)与Transformer全概述

🌰 知识点概述


🧠 核心区别对比表

特性 NN(全连接网络) CNN(卷积网络) RNN(循环网络) Transformer
输入类型 固定长度的结构化数据(如表格) 网格状数据(图像/音频) 时序数据(文本/时间序列) 长序列数据(文本/语音)
核心结构 全连接层 卷积层 + 池化层 循环单元(LSTM/GRU) 自注意力机制 + 位置编码
参数共享 ❌ 无 ✅ 卷积核共享(空间局部性) ✅ 循环权重共享(时序共享) ✅ 注意力权重动态分配
时序依赖处理 ❌ 忽略时序关系 ❌ 仅局部空间关系 ✅ 顺序处理(短期记忆依赖) 全局依赖(并行计算)
典型应用 房价预测/简单分类 图像分类/目标检测 文本生成/股票预测 机器翻译/文本摘要(如BERT)
训练效率 低效(参数爆炸) 高效(参数共享) 低效(顺序计算) 高效(并行计算)但内存消耗大
长序列处理 ❌ 不支持 ❌ 不支持 ❌ 梯度消失/遗忘早期信息 ✅ 自注意力直接关联任意位置
关键创新 基础神经元模型 局部感知/权重共享 时间步状态传递 多头注意力 + 位置编码

生活化案例理解

  1. NN

    类比 :盲人摸象,每个神经元独立感知全局特征

    局限:输入图像需展平为向量,丢失空间信息(如将28x28图片变成784维向量)

  2. CNN

    类比 :人类视觉系统,先识别边缘→形状→物体

    实战:用3x3卷积核扫描猫的图片,提取耳朵、胡须等局部特征

  3. RNN

    类比 :阅读理解,需记住前文才能理解后文

    痛点:输入句子"The cat sat on the mat",到第6个单词时可能已遗忘"cat"

  4. Transformer

    类比 :团队协作,每个单词直接关注全局上下文

    优势:处理句子"I arrived at the bank after crossing the river"时,"bank"可同时关注"river"(消除歧义)


🔑 选型指南

场景 推荐模型 理由
表格数据分类/回归 NN 结构简单,无需复杂特征提取
图像识别/目标检测 CNN 高效捕捉空间局部特征
短文本生成/时间序列预测 RNN(LSTM/GRU) 处理简单时序依赖
长文本翻译/文档摘要 Transformer 捕捉长距离依赖,并行计算高效
多模态数据(如图文匹配) Transformer+CNN 联合处理文本和图像特征
相关推荐
知乎的哥廷根数学学派5 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
强盛小灵通专卖员6 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
WJSKad12356 小时前
Mask R-CNN托盘完整性检测与分类实战指南_3
分类·r语言·cnn
Hcoco_me6 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者6 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
极海拾贝7 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派7 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
知乎的哥廷根数学学派8 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
童话名剑8 小时前
锚框 与 完整YOLO示例(吴恩达深度学习笔记)
笔记·深度学习·yolo··anchor box