BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测,附模型报告

BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测,附模型报告

目录

预测效果






基本介绍

BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测 (Matlab2020b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测 (Matlab2023b 多输入单输出),考虑历史特征的影响。

BKA优化隐藏层节点数、初始学习率、L2正则化系数。黑翅鸢优化算法(Black-winged kite algorithm,BKA)是一种受自然启发的群智能优化算法。

3.运行环境要求MATLAB版本为2020b及其以上。

4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

数据集

程序设计

  • 完整源码和数据获取方式私信回复BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测,附模型报告。
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
go546315846515 小时前
基于阿里云平台的文章评价模型训练与应用全流程指南
图像处理·人工智能·深度学习·阿里云·cnn·机器人·云计算
绝顶大聪明1 天前
【CNN】卷积神经网络多通道卷积与偏置过程- part2
深度学习·神经网络·cnn
cwn_1 天前
tensorflow搭建神经网络
人工智能·rnn·深度学习·神经网络·机器学习·cnn·tensorflow
绝顶大聪明1 天前
【CNN】模型评估标准
人工智能·机器学习·cnn
M-YM2 天前
卷积神经网络:LeNet模型
深度学习·机器学习·cnn
_Orch1d2 天前
初识卷积神经网络CNN
深度学习·计算机视觉·cnn·卷积神经网络
王小王-1233 天前
基于深度学习的语音情感识别系统的设计与实现【BiLSTM、多层感知神经网络、Emotion2Vec、与CustomFeature】
深度学习·神经网络·bilstm·语音情感识别系统·emotion2vec·customfeature
go54631584653 天前
基于卷积神经网络与小波变换的医学图像超分辨率算法复现
开发语言·图像处理·人工智能·深度学习·神经网络·算法·cnn
淦暴尼4 天前
通俗易懂卷积神经网络(CNN)指南
人工智能·神经网络·cnn
您好啊数模君4 天前
30天打牢数模基础-卷积神经网络讲解
数学建模·cnn·卷积神经网络·2025数学建模国赛