BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测,附模型报告

BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测,附模型报告

目录

预测效果






基本介绍

BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测 (Matlab2020b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测 (Matlab2023b 多输入单输出),考虑历史特征的影响。

BKA优化隐藏层节点数、初始学习率、L2正则化系数。黑翅鸢优化算法(Black-winged kite algorithm,BKA)是一种受自然启发的群智能优化算法。

3.运行环境要求MATLAB版本为2020b及其以上。

4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

数据集

程序设计

  • 完整源码和数据获取方式私信回复BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM、CNN四模型多变量时序光伏功率预测,附模型报告。
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
慢半拍iii2 小时前
ops-nn性能调优实战:提升神经网络推理速度的秘诀
人工智能·神经网络·ai·cnn·cann
爱吃泡芙的小白白16 小时前
深入解析CNN中的Dropout层:从基础原理到最新变体实战
人工智能·神经网络·cnn·dropout·防止过拟合
偷吃的耗子17 小时前
【CNN算法理解】:卷积神经网络 (CNN) 数值计算与传播机制
人工智能·算法·cnn
爱吃泡芙的小白白19 小时前
CNN的FLOPs:从理论计算到实战避坑指南
人工智能·神经网络·cnn·flops
JicasdC123asd21 小时前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
机器学习之心1 天前
基于CNN-GRU(卷积神经网络-门控循环单元)的多变量负荷预测模型MATLAB代码
matlab·cnn·gru
爱吃泡芙的小白白1 天前
深入浅出:卷积神经网络(CNN)池化层全解析——从MaxPool到前沿发展
人工智能·神经网络·cnn·池化层·最大值池化·平均值池化
偷吃的耗子1 天前
【CNN算法理解】:基于训练好的MNIST CNN模型进行预测
人工智能·算法·cnn
爱吃泡芙的小白白1 天前
CNN激活函数新篇:Sigmoid与Softmax的进化与实战
人工智能·神经网络·cnn·softmax·sigmoid·函数激活层
海绵宝宝de派小星1 天前
经典CNN架构:LeNet、AlexNet、VGG、GoogLeNet、ResNet
人工智能·神经网络·ai·cnn