单变量单步时序预测:CNN-GRU卷积神经网络结合门控循环单元

目录

      • 预测效果
      • [1. **CNN-GRU的基本原理**](#1. CNN-GRU的基本原理)
      • [2. **应用场景**](#2. 应用场景)
      • [3. **模型结构与实现**](#3. 模型结构与实现)
      • [4. **优势与挑战**](#4. 优势与挑战)
      • [5. **相关研究与实现**](#5. 相关研究与实现)
      • [6. **未来发展方向**](#6. 未来发展方向)
      • 结论
      • 代码设计

预测效果


CNN-GRU卷积神经网络结合门控循环单元是一种结合了卷积神经网络(CNN)和门控循环单元(GRU)的深度学习模型,广泛应用于时间序列预测:

1. CNN-GRU的基本原理

CNN-GRU模型结合了CNN和GRU的优势,分别负责不同的任务:

  • CNN(卷积神经网络) :主要用于提取输入数据的局部特征。CNN通过卷积层和池化层提取图像、信号或时间序列数据的局部特征,具有强大的特征提取能力。
  • GRU(门控循环单元) :用于处理序列数据,解决传统RNN中的梯度消失和梯度爆炸问题。GRU通过更新门和重置门控制信息流,能够有效捕捉序列数据中的长期依赖关系。

2. 应用场景

CNN-GRU模型在多个领域有广泛应用,包括交通预测、风电功率预测、股价预测等。

3. 模型结构与实现

CNN-GRU模型通常包括以下结构:

  • 输入层:接收原始数据(如时间序列等)。
  • 卷积层:提取局部特征。
  • 池化层:降低特征维度,保留重要信息。
  • GRU层:处理序列数据,捕捉长期依赖关系。
  • 全连接层:输出最终结果。

4. 优势与挑战

  • 优势:CNN-GRU结合了CNN的局部特征提取能力和GRU的序列处理能力,能够有效处理复杂数据,提高预测精度和模型性能。
  • 挑战:模型训练复杂,需要大量数据和计算资源,且对超参数敏感。

5. 相关研究与实现

多个研究和论文详细探讨了CNN-GRU模型的实现和应用,例如:

  • Matlab实现:多个研究使用Matlab实现CNN-GRU模型,用于时间序列预测。

6. 未来发展方向

  • 融合注意力机制:结合注意力机制(Attention)可以进一步提升模型性能。
  • 轻量化模型 :优化模型结构,减少计算资源消耗,适用于边缘设备和实时应用。

结论

CNN-GRU是一种强大的深度学习模型,结合了CNN和GRU的优,具有良好的扩展性和应用潜力。随着技术的不断发展,CNN-GRU模型将在更多领域发挥重要作用。

代码设计

matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
data = xlsread('数据集.xlsx');

[h1,l1]=data_process(data,24);   %步长为24,采用前24个时刻的温度预测第25个时刻的温度
res = [h1,l1];
num_samples = size(res,1);   %样本个数


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺

for i = 1:size(P_train,2)
    trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
end

for i = 1:size(p_test,2)
    testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
end


targetD =  t_train;
targetD_test  =  t_test;

numFeatures = size(p_train,1);
相关推荐
Lululaurel16 小时前
提示工程深度解析:驾驭大语言模型的艺术与科学
人工智能·ai·aigc·提示词
simon_skywalker16 小时前
第7章 n步时序差分 n步时序差分预测
人工智能·算法·强化学习
唐兴通个人16 小时前
清华大学AI领导力AI时代领导力AI变革领导力培训师培训讲师专家唐兴通讲授数字化转型人工智能组织创新实践领导力国央企国有企业金融运营商制造业
人工智能·数据挖掘
云卓SKYDROID17 小时前
无人机定点派送技术要点与运行方式
人工智能·无人机·航电系统·高科技·云卓科技
码界筑梦坊17 小时前
206-基于深度学习的胸部CT肺癌诊断项目的设计与实现
人工智能·python·深度学习·flask·毕业设计
通往曙光的路上17 小时前
国庆回来的css
人工智能·python·tensorflow
算家计算18 小时前
国产大模型问鼎全球:混元图像3.0登顶文生图榜单的启示
人工智能·开源·资讯
Rock_yzh18 小时前
AI学习日记——神经网络参数的更新
人工智能·python·深度学习·神经网络·学习
wa的一声哭了19 小时前
Stanford CS336 assignment1 | Transformer Language Model Architecture
人工智能·pytorch·python·深度学习·神经网络·语言模型·transformer