TensorFlow的数学运算

目录

前言

在TensorFlow中既可以使用数学运算符号进行数学运算也可以使用TensorFlow定义好的数学运算方法。

1. 运算符与函数的对应关系

TensorFlow重载了Python运算符,使其能够直接操作张量(Tensor)。例如:

加法:a + b 等价于 tf.add(a, b)

减法:a - b 等价于 tf.subtract(a, b)

乘法:a * b 等价于 tf.multiply(a, b)

除法:a / b 等价于 tf.divide(a, b)

矩阵乘法:a @ b 等价于 tf.matmul(a, b)

python 复制代码
import tensorflow as tf

#  定义常量
a = tf.constant(2)
b = tf.constant(3)


# 使用运算符
c1 = a + b  # 结果为 5
print(c1.numpy())

# 使用TensorFlow函数
c2 = tf.add(a, b)  # 结果相同
print(c2.numpy())

结果如下:

powershell 复制代码
5
5

2.何时必须使用函数?

以下场景需直接调用TensorFlow函数:

归约操作:如tf.reduce_sum()(求和)、tf.reduce_mean()(求平均)等。

复杂运算:如矩阵乘法(tf.matmul)、卷积(tf.nn.conv2d)、梯度计算等。

指定参数:如设置计算轴(axis)、数据类型(dtype)或操作名称(name)。

聚合运算:

python 复制代码
import tensorflow as tf
import numpy as np

x = np.random.randint(0,10, size=(3,6))
x_mean = tf.reduce_mean(x)
# 默认会聚合所有的维度
print(x_mean.numpy())

# 可以指定聚合的轴
x_reduce_mean = tf.reduce_mean(x, axis=0)
print(x_reduce_mean.numpy())

结果如下;

powershell 复制代码
4
[3 4 6 1 5 5]

矩阵运算:

python 复制代码
import tensorflow as tf
import numpy as np

# 矩阵运算
x = np.random.randint(0,10, size=(3,6))
y = np.random.randint(0,10, size=(6,4))
dot = tf.matmul(x, y)
print(dot.numpy())
powershell 复制代码
[[129  73 184 121]
 [ 99  83 137 122]
 [137  63 121  97]]
相关推荐
许泽宇的技术分享1 分钟前
Flutter + Ollama:开启本地AI的全平台新纪元 —— 从零剖析一款现代化AI客户端的技术奥秘
人工智能·flutter
大翻哥哥9 分钟前
Python 2025:异步革命与AI驱动下的开发新范式
开发语言·人工智能·python
hhzz17 分钟前
Pythoner 的Flask项目实践-在web页面实现矢量数据转换工具集功能(附源码)
前端·python·flask
安娜的信息安全说17 分钟前
Hugging Face vs Ollama:云端协作与本地隐私的AI平台对决
人工智能·hugging face·ollama
watersink36 分钟前
文档解析Logics-Parsing
人工智能
学习的学习者42 分钟前
CS课程项目设计19:基于DeepFace人脸识别库的课堂签到系统
人工智能·python·深度学习·人脸识别算法
不惑_1 小时前
AI大模型是怎么工作的?从石头分类说起
人工智能·分类·数据挖掘
IT古董1 小时前
【第五章:计算机视觉-项目实战之生成对抗网络实战】2.基于SRGAN的图像超分辨率实战-(2)实战1:DCGAN模型搭建
人工智能·生成对抗网络·计算机视觉
悠哉悠哉愿意1 小时前
【数据结构与算法学习笔记】双指针
数据结构·笔记·python·学习·算法
MoRanzhi12031 小时前
5. Pandas 缺失值与异常值处理
数据结构·python·数据挖掘·数据分析·pandas·缺失值处理·异常值处理