TensorFlow的数学运算

目录

前言

在TensorFlow中既可以使用数学运算符号进行数学运算也可以使用TensorFlow定义好的数学运算方法。

1. 运算符与函数的对应关系

TensorFlow重载了Python运算符,使其能够直接操作张量(Tensor)。例如:

加法:a + b 等价于 tf.add(a, b)

减法:a - b 等价于 tf.subtract(a, b)

乘法:a * b 等价于 tf.multiply(a, b)

除法:a / b 等价于 tf.divide(a, b)

矩阵乘法:a @ b 等价于 tf.matmul(a, b)

python 复制代码
import tensorflow as tf

#  定义常量
a = tf.constant(2)
b = tf.constant(3)


# 使用运算符
c1 = a + b  # 结果为 5
print(c1.numpy())

# 使用TensorFlow函数
c2 = tf.add(a, b)  # 结果相同
print(c2.numpy())

结果如下:

powershell 复制代码
5
5

2.何时必须使用函数?

以下场景需直接调用TensorFlow函数:

归约操作:如tf.reduce_sum()(求和)、tf.reduce_mean()(求平均)等。

复杂运算:如矩阵乘法(tf.matmul)、卷积(tf.nn.conv2d)、梯度计算等。

指定参数:如设置计算轴(axis)、数据类型(dtype)或操作名称(name)。

聚合运算:

python 复制代码
import tensorflow as tf
import numpy as np

x = np.random.randint(0,10, size=(3,6))
x_mean = tf.reduce_mean(x)
# 默认会聚合所有的维度
print(x_mean.numpy())

# 可以指定聚合的轴
x_reduce_mean = tf.reduce_mean(x, axis=0)
print(x_reduce_mean.numpy())

结果如下;

powershell 复制代码
4
[3 4 6 1 5 5]

矩阵运算:

python 复制代码
import tensorflow as tf
import numpy as np

# 矩阵运算
x = np.random.randint(0,10, size=(3,6))
y = np.random.randint(0,10, size=(6,4))
dot = tf.matmul(x, y)
print(dot.numpy())
powershell 复制代码
[[129  73 184 121]
 [ 99  83 137 122]
 [137  63 121  97]]
相关推荐
AKAMAI4 分钟前
Akamai Cloud客户案例 | IPPRA的简洁、经济、易用的云计算服务
人工智能·云计算
艾上编程19 分钟前
第三章——爬虫工具场景之Python爬虫实战:学术文献摘要爬取,助力科研高效进行
开发语言·爬虫·python
Hi_kenyon28 分钟前
FastAPI+VUE3创建一个项目的步骤模板(二)
python·fastapi
Exploring29 分钟前
从零搭建使用 Open-AutoGML 搜索附近的美食
android·人工智能
阿里云大数据AI技术42 分钟前
在 DataWorks 中一键部署大模型,即刻用于数据集成和数据开发
人工智能
拉普拉斯妖10843 分钟前
DAY38 Dataset和DataLoader
python
AI科技星1 小时前
质量定义方程常数k = 4π m_p的来源、推导与意义
服务器·数据结构·人工智能·科技·算法·机器学习·生活
机器之心1 小时前
OpenAI推出全新ChatGPT Images,奥特曼亮出腹肌搞宣传
人工智能·openai
机器之心1 小时前
SIGGRAPH Asia 2025:摩尔线程赢图形顶会3DGS挑战赛大奖,自研LiteGS全面开源
人工智能·openai