TensorFlow的数学运算

目录

前言

在TensorFlow中既可以使用数学运算符号进行数学运算也可以使用TensorFlow定义好的数学运算方法。

1. 运算符与函数的对应关系

TensorFlow重载了Python运算符,使其能够直接操作张量(Tensor)。例如:

加法:a + b 等价于 tf.add(a, b)

减法:a - b 等价于 tf.subtract(a, b)

乘法:a * b 等价于 tf.multiply(a, b)

除法:a / b 等价于 tf.divide(a, b)

矩阵乘法:a @ b 等价于 tf.matmul(a, b)

python 复制代码
import tensorflow as tf

#  定义常量
a = tf.constant(2)
b = tf.constant(3)


# 使用运算符
c1 = a + b  # 结果为 5
print(c1.numpy())

# 使用TensorFlow函数
c2 = tf.add(a, b)  # 结果相同
print(c2.numpy())

结果如下:

powershell 复制代码
5
5

2.何时必须使用函数?

以下场景需直接调用TensorFlow函数:

归约操作:如tf.reduce_sum()(求和)、tf.reduce_mean()(求平均)等。

复杂运算:如矩阵乘法(tf.matmul)、卷积(tf.nn.conv2d)、梯度计算等。

指定参数:如设置计算轴(axis)、数据类型(dtype)或操作名称(name)。

聚合运算:

python 复制代码
import tensorflow as tf
import numpy as np

x = np.random.randint(0,10, size=(3,6))
x_mean = tf.reduce_mean(x)
# 默认会聚合所有的维度
print(x_mean.numpy())

# 可以指定聚合的轴
x_reduce_mean = tf.reduce_mean(x, axis=0)
print(x_reduce_mean.numpy())

结果如下;

powershell 复制代码
4
[3 4 6 1 5 5]

矩阵运算:

python 复制代码
import tensorflow as tf
import numpy as np

# 矩阵运算
x = np.random.randint(0,10, size=(3,6))
y = np.random.randint(0,10, size=(6,4))
dot = tf.matmul(x, y)
print(dot.numpy())
powershell 复制代码
[[129  73 184 121]
 [ 99  83 137 122]
 [137  63 121  97]]
相关推荐
西柚小萌新7 分钟前
【深度学习:进阶篇】--2.4.BN与神经网络调优
人工智能·深度学习·神经网络
金融小师妹9 分钟前
解码美元-黄金负相关:LSTM-Attention因果发现与黄金反弹推演
大数据·人工智能·算法
DZSpace13 分钟前
AI Agent 核心策略解析:Function Calling 与 ReAct 的设计哲学与应用实践
人工智能·大模型
小郑00116 分钟前
智能体还能配置MCP?智灵助理:打造智能交互新时代的全能助手
人工智能
AI大模型技术社21 分钟前
神经网络学习路线图:从感知机到Transformer的认知跃迁
人工智能
黄卷青灯7732 分钟前
把下载的ippicv.tgz放入<opencv_build_dir>/3rdparty/ippicv/download/中cmake依然无法识别
人工智能·opencv·计算机视觉·ippicv
程序员老刘1 小时前
MCP:新时代的API,每个程序员都应该掌握
人工智能·flutter·mcp
Humbunklung1 小时前
全连接层和卷积层
人工智能·python·深度学习·神经网络·机器学习·cnn
站大爷IP1 小时前
使用Python时要注意的十大陷阱
python
广州山泉婚姻1 小时前
解锁高效开发:Spring Boot 3和MyBatis-Flex在智慧零工平台后端的应用实战
人工智能·spring boot·spring