【极速版 -- 大模型入门到进阶】LORA:大模型轻量级微调

文章目录

    • [🌊 有没有低成本的方法微调大模型?](#🌊 有没有低成本的方法微调大模型?)
    • [🌊 LoRA 的核心思想](#🌊 LoRA 的核心思想)
    • [🌊 LoRA 的初始化和 r r r 的值设定](#🌊 LoRA 的初始化和 r r r 的值设定)
    • [🌊 LoRA 实战:LoraConfig参数详解](#🌊 LoRA 实战:LoraConfig参数详解)

论文指路:LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

🌊 有没有低成本的方法微调大模型?

  • 2021年微软提出 LORA :LOW-RANK ADAPTATION 低秩适配
    • 什么是秩?】一个矩阵的秩是指矩阵中线性独立的行或列的最大数目;也就是说 一个矩阵的秩越大,它包含的有效信息就越多

🌊 LoRA 的核心思想

  • LoRA通过优化在适应过程中 FC 层权重变化 ( Δ w ∈ R m × n \Delta w \in \mathbb{R}^{m\times n} Δw∈Rm×n) 的秩分解矩阵 ( A ∈ R m × r × B ∈ R r × n A \in \mathbb{R}^{m\times r} \times B\in \mathbb{R}^{r\times n} A∈Rm×r×B∈Rr×n),来间接调整神经网络中部分层的权重 ( w w w) 。不修改预先训练好的权重,而是通过引入一个低秩的矩阵来实现对这些层的适应调整
    • r < < min ⁡ ( m , n ) r << \min(m,n) r<<min(m,n)
  • 用更小的参数空间存储 模型参数变化量 Δ w \Delta w Δw

    • Δ w \Delta w Δw: 模型参数变化量,也就是对原参数 w w w 变化 Δ w \Delta w Δw 可以适配新任务。LoRA 用 A 和 B 计算获得模型参数变化量 Δ w \Delta w Δw,叠加到原参数 w w w 上

🌊 LoRA 的初始化和 r r r 的值设定

  • 用随机高斯分布初始化 A A A ,用 0 矩阵初始化 B B B, 保证训练的开始此旁路矩阵依然是 0 矩阵
  • 对于一般的任务, r = 1 , 2 , 4 , . . . r = 1,2,4, ... r=1,2,4,... 就足够了。而一些领域差距比较大的任务可能需要更大的 r r r

🌊 LoRA 实战:LoraConfig参数详解

目前 LORA 已经被 HuggingFace 集成在了 PEFT(Parameter-Efficient Fine-Tuning) 代码库里

所以,使用也非常简单

python3 复制代码
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType

# preModel = ....from_pretrained(".. bert-base-uncased ..")  # 加载你的预训练模型

peft_config = LoraConfig(
    r=4,  # LoRA 维数
    lora_alpha=8,  # ΔW 按 α / r 缩放
	target_modules=["", "", ...],  # 对哪些模块进行微调
    lora_dropout=0.1  # 默认值为 0
)
model = get_peft_model(preModel, peft_config)  # 预训练模型 -> 加好了 LoRA 之后的模型

参考资料: 【LoRA&CN全解析】, 【知乎高赞-大模型轻量级微调】

相关推荐
python零基础入门小白10 小时前
【万字长文】大模型应用开发:意图路由与查询重写设计模式(从入门到精通)
java·开发语言·设计模式·语言模型·架构·大模型应用开发·大模型学习
重整旗鼓~18 小时前
3.会话功能-AiServices工具类
java·语言模型·langchain
清云逸仙19 小时前
AI Prompt应用实战:评论审核系统实现
人工智能·经验分享·ai·语言模型·prompt·ai编程
清云逸仙19 小时前
使用AI(GPT-4)实现AI prompt 应用--自动审核评论系统
人工智能·经验分享·ai·语言模型·ai编程
Curvatureflight1 天前
GPT-4o Realtime 之后:全双工语音大模型如何改变下一代人机交互?
人工智能·语言模型·架构·人机交互
做cv的小昊1 天前
VLM经典论文阅读:【综述】An Introduction to Vision-Language Modeling
论文阅读·人工智能·计算机视觉·语言模型·自然语言处理·bert·transformer
开放知识图谱1 天前
论文浅尝 | 利用条件语句激发和提升大语言模型的因果推理能力(CL2025)
人工智能·语言模型·自然语言处理
rgb2gray1 天前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
人机与认知实验室2 天前
国内主流大语言模型之比较
人工智能·语言模型·自然语言处理
AGI前沿2 天前
AdamW的继任者?AdamHD让LLM训练提速15%,性能提升4.7%,显存再省30%
人工智能·算法·语言模型·aigc