OpenCV图像拼接(10)用于实现图像拼接过程中的时间流逝(timelapse)效果的一个类cv::detail::Timelapser

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::detail::Timelapser 是 OpenCV 库中用于实现图像拼接过程中的时间流逝(timelapse)效果的一个类。它通常用于将一系列的图像或视频帧组合成一个平滑过渡的序列,常应用于延时摄影(time-lapse photography)或者视频合成等领域。

这个类的主要作用是管理图像拼接的过程,并提供一种方法来创建不同类型的 Timelapser 实例,以适应不同的需求和场景。

主要成员函数

  • createDefault(): 静态成员函数,用于创建一个默认类型的 Timelapser 对象。根据传入的参数类型,可以生成不同策略的时间流逝实例。

  • apply(): 应用当前的拼接设置到输入图像上,生成拼接结果。该函数可能有不同的重载形式,以支持不同类型的操作和输入。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/stitching/detail/timelapsers.hpp>
#include <vector>

using namespace cv;
using namespace cv::detail;
using namespace std;

int main()
{
    // 图像文件列表
    vector< String > img_names = { "/media/dingxin/data/study/OpenCV/sources/images/lapsetimer1.png", "/media/dingxin/data/study/OpenCV/sources/images/lapsetimer2.png",
                                   "/media/dingxin/data/study/OpenCV/sources/images/lapsetimer3.png" };
    vector< Mat > imgs;

    // 加载所有图像
    for ( const auto& name : img_names )
    {
        Mat img = imread( name, IMREAD_COLOR );  // 确保以彩色模式读取图像
        if ( img.empty() )
        {
            cout << "无法加载图像: " << name << endl;
            return -1;
        }
        imgs.push_back( img );
    }

    // 创建Timelapser实例
    Ptr< Timelapser > timelapser = Timelapser::createDefault( Timelapser::AS_IS );

    // 初始化Timelapser,假设所有图像具有相同的尺寸
    Size dst_size = imgs[ 0 ].size();
    vector< Point > corners;  // 每个图像对应的角落位置
    vector< Size > sizes;     // 每个图像的尺寸

    for ( size_t i = 0; i < imgs.size(); ++i )
    {
        corners.push_back( Point( 0, 0 ) );  // 假设每个图像都在左上角
        sizes.push_back( dst_size );         // 所有图像具有相同的尺寸
    }

    timelapser->initialize( corners, sizes );

    // 处理每张图像
    for ( size_t i = 0; i < imgs.size(); ++i )
    {
        Mat img_converted;
        imgs[ i ].convertTo( img_converted, CV_16SC3 );  // 将图像转换为16位深度、三通道的短整型格式

        timelapser->process( img_converted, noArray(), Point( 0, 0 ) );  // 使用noArray()作为mask,假设不需要掩码

        // 获取当前帧的结果
        UMat result_umat = timelapser->getDst();
        Mat result;
        result_umat.copyTo( result );  // 将UMat转换为Mat以便显示或保存
        Mat restoredImageMat;
        result.convertTo( restoredImageMat, CV_8U );  // 如果需要的话,调整数据类型以适应显示

        imshow( "Current Frame", restoredImageMat );
        waitKey( 300 );  // 暂停一段时间以便观察每一帧
    }

    // 获取最终拼接结果
    UMat final_result_umat = timelapser->getDst();
    Mat final_result;
    final_result_umat.copyTo( final_result );
    imwrite( "final_timelapse.jpg", final_result );
    cout << "时间流逝视频的最后一帧已保存为 final_timelapse.jpg" << endl;

    return 0;
}
相关推荐
一切尽在,你来7 分钟前
1.2 LangChain 1.2.7 版本核心特性与升级点
人工智能·langchain
LYFlied9 分钟前
AI大时代下前端跨端解决方案的现状与演进路径
前端·人工智能
深蓝电商API12 分钟前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
.Katherine௰12 分钟前
AI数字人模拟面试机器人
人工智能
光影少年13 分钟前
AI 前端 / 高级前端
前端·人工智能·状态模式
zhangshuang-peta18 分钟前
OpenCode vs Claude Code vs OpenAI Codex:AI编程助手全面对比
人工智能·ai agent·mcp·peta
Bruk.Liu21 分钟前
(LangChain 实战14):基于 ChatMessageHistory 自定义实现对话记忆功能
人工智能·python·langchain·agent
代码改善世界22 分钟前
CANN中的AI算子开发:ops-nn仓库深度解读
人工智能
大江东去浪淘尽千古风流人物36 分钟前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法
云飞云共享云桌面36 分钟前
高性能图形工作站的资源如何共享给10个SolidWorks研发设计用
linux·运维·服务器·前端·网络·数据库·人工智能