通过Llama-Factory对Deepseek-r1:1.5b进行微调

由于近期项目需求,我们计划在机器狗上部署对话大模型,并结合具体业务场景进行定制化回答。在技术选型过程中,我们对比了RAG(Retrieval-Augmented Generation)和模型微调两种策略。RAG虽然在知识检索方面表现优异,但需要额外部署文本嵌入模型,增加了部署复杂性和资源开销。相比之下,模型微调能够直接针对特定场景优化模型性能,避免了冗余组件的引入,因此我们最终选择了微调策略。

在微调框架的选择上,我们采用了LLaMA-Factory。这是一款开源的低代码大模型微调框架,集成了当前业界广泛使用的微调技术,能够显著简化微调流程。其核心优势在于支持通过Web UI界面实现零代码微调,大幅降低了技术门槛,同时保留了高度的灵活性。通过该框架,我们能够快速将业务场景数据注入模型,实现高效的知识定制化,最终满足项目对对话大模型的实际需求。

1. 环境配置

默认anaconda、cuda都已经安装完毕!

conda create -n Llama-Factory python=3.10

python 推荐3.10

torch推荐2.4

torch在阿里云直接下载离线版的cuda版本安装,链接

微调Deepseek-r1:1.5b需要8G左右的显存

git llama factory项目

git clone https://github.com/hiyouga/LLaMA-Factory.git

复制代码
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

验证安装

llamafactory-cli version

2. 准备数据集

bash 复制代码
[
  {
    "instruction": "人类指令",
    "input": "人类输入",
    "output": "模型回答"
  }
]

3. 开始训练

启动llamafactory

llamafactory-cli webui

运行以上命令会自动跳转一个gradio的界面,如果报错可以尝试升级gradio

pip install --upgrade gradio

加载模型

加载数据集

查看数据集

调整参数

设置权重保存路径

开始训练

4. 测试模型

训练结束后,会绘制loss曲线

加载训练的权重,开始对话

测试完成,微调成功

用于微调的数据集很关键!!!

相关推荐
AI大模型3 天前
基于 Docker 的 LLaMA-Factory 全流程部署指南
docker·llm·llama
m0_603888719 天前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览
三千院本院13 天前
LlaMA_Factory实战微调VL大模型
llama
爱分享的飘哥18 天前
第四十六章:AI的“瞬时记忆”与“高效聚焦”:llama.cpp的KV Cache与Attention机制
llama·llama.cpp·kv cache·attention优化·llm cpu推理·量化attention·gguf推理
psyq19 天前
LLaMA Factory 角色扮演模型微调实践记录
人工智能·llama
liliangcsdn1 个月前
mac测试ollama llamaindex
数据仓库·人工智能·prompt·llama
茫茫人海一粒沙1 个月前
使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
llama
liliangcsdn1 个月前
mac llama_index agent算术式子计算示例
人工智能·python·macos·llama
许愿与你永世安宁1 个月前
RAG(检索增强生成)里的文档管理
数据库·人工智能·gpt·oracle·llama·rag
许愿与你永世安宁1 个月前
基于Llama的RAG 3种模型配置方法
人工智能·python·自然语言处理·json·github·llama·faiss