AE, VAE和VQ-VAE有什么区别?

写在前面

AE, VAE, VQ-VAE是一系列的工作,其中VAE更是构成了整个AIGC的重要基石,那么他们之间有什么区别呢?

1. AE

AE(AutoEncoder)是一种自编码器,能够将一个图片压缩成一个较短的向量。其结构如下所示。

它有一对编码器和解码器, 编码器负责将图片压缩到一个较短的向量,而解码器负责将较短的向量恢复成图片。在训练的时候,两者做loss。但是这样的话会有一个问题,即Decoder只认识Encoder的向量,一旦我们扔掉Encoder,那么Decoder将会变得毫无用处。

2. VAE

如果我们能够限制住AE的编码空间,使其能够符合某个数学分布,比如标准正态分布,那么我们就可以在标准正态分布中随机采样给Decoder,那么就能够生成随机的图了。VAE就是来干这事儿的网络。网络结构如下:

3. VQ-VAE

但是VAE生成图的质量普遍不高,有人认为原因是因为VAE把图片编码成了连续的变量,但是我们在描述物体时,转化为离散变量会更为自然。比如我们描述一个人,不会说胖0.6, 性别是0.5, 年龄是0.3。而是说男或女,年龄20。

但是把图像编码成离散化之后,就又出现了两个新的问题。

  1. 神经网络擅长处理连续的数值,而不擅长处理离散数据。解决方法是借鉴nlp中处理离散单词的方法,将连续数据处理成一个独一无二的连续向量上
  1. 另外一个问题是,离散空间不太好采样,因此不能像VAE那样进行随机图像生成。

VQVAE的作者的做法是,通过PixelCNN随机在数学分布中采样,生成小图像,再用VQGAN的decoder翻译小图像成大图像。

具体做法如下:

  1. 训练VQGAN的编码器和解码器,编码器负责将图像压缩到小图像,解码器负责将小图像还原成大图
  2. 训练PixelCNN, 让它拥有能够从随机分布中采样成小图像的能力
  3. 扔掉VQGAN的编码器,接上PixelCNN, 使得VQVAE拥有从随机分布中采样图像的能力

那么VQGAN怎么生成离散向量的呢?

作者设计了一个embedding space

为了能够让编码器的输入向量、embedding space, 以及解码器的输入张量embedding关联起来,作者做了如下方案:

假设codebook已经训练完毕,对于编码器的每个输入z(x), 通过最近邻找到embedding中与之最相近的向量z(q), 然后用z(q)替换z(x)。

相关推荐
机器学习之心6 分钟前
一个基于自适应图卷积神经微分方程(AGCNDE)的时空序列预测Matlab实现。这个模型结合了图卷积网络和神经微分方程,能够有效捕捉时空数据的动态演化规律
人工智能·深度学习·matlab·时空序列预测
研梦非凡1 小时前
ShapeLLM: 用于具身交互的全面3D物体理解
人工智能·深度学习·计算机视觉·3d·架构·数据分析
Mintopia1 小时前
开源数据集在 WebAI 模型训练中的技术价值与风险:当我们把互联网塞进显存
前端·javascript·aigc
kalvin_y_liu2 小时前
DeploySharp开源发布:让C#部署深度学习模型更加简单
深度学习·开源·c#
CoovallyAIHub2 小时前
YOLO26学界首评:四大革新点究竟有多强?
深度学习·算法·计算机视觉
用户5191495848452 小时前
使用eBPF技术保护FastAPI安全
人工智能·aigc
用户5191495848452 小时前
最简单的SQL注入测试方法:Break & Repair技术详解
人工智能·aigc
EdisonZhou4 小时前
多Agent协作入门:基于A2A协议的Agent通信(下)
aigc·agent·.net core
格林威12 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
lyx331369675912 小时前
#深度学习基础:神经网络基础与PyTorch
pytorch·深度学习·神经网络·参数初始化