AE, VAE和VQ-VAE有什么区别?

写在前面

AE, VAE, VQ-VAE是一系列的工作,其中VAE更是构成了整个AIGC的重要基石,那么他们之间有什么区别呢?

1. AE

AE(AutoEncoder)是一种自编码器,能够将一个图片压缩成一个较短的向量。其结构如下所示。

它有一对编码器和解码器, 编码器负责将图片压缩到一个较短的向量,而解码器负责将较短的向量恢复成图片。在训练的时候,两者做loss。但是这样的话会有一个问题,即Decoder只认识Encoder的向量,一旦我们扔掉Encoder,那么Decoder将会变得毫无用处。

2. VAE

如果我们能够限制住AE的编码空间,使其能够符合某个数学分布,比如标准正态分布,那么我们就可以在标准正态分布中随机采样给Decoder,那么就能够生成随机的图了。VAE就是来干这事儿的网络。网络结构如下:

3. VQ-VAE

但是VAE生成图的质量普遍不高,有人认为原因是因为VAE把图片编码成了连续的变量,但是我们在描述物体时,转化为离散变量会更为自然。比如我们描述一个人,不会说胖0.6, 性别是0.5, 年龄是0.3。而是说男或女,年龄20。

但是把图像编码成离散化之后,就又出现了两个新的问题。

  1. 神经网络擅长处理连续的数值,而不擅长处理离散数据。解决方法是借鉴nlp中处理离散单词的方法,将连续数据处理成一个独一无二的连续向量上
  1. 另外一个问题是,离散空间不太好采样,因此不能像VAE那样进行随机图像生成。

VQVAE的作者的做法是,通过PixelCNN随机在数学分布中采样,生成小图像,再用VQGAN的decoder翻译小图像成大图像。

具体做法如下:

  1. 训练VQGAN的编码器和解码器,编码器负责将图像压缩到小图像,解码器负责将小图像还原成大图
  2. 训练PixelCNN, 让它拥有能够从随机分布中采样成小图像的能力
  3. 扔掉VQGAN的编码器,接上PixelCNN, 使得VQVAE拥有从随机分布中采样图像的能力

那么VQGAN怎么生成离散向量的呢?

作者设计了一个embedding space

为了能够让编码器的输入向量、embedding space, 以及解码器的输入张量embedding关联起来,作者做了如下方案:

假设codebook已经训练完毕,对于编码器的每个输入z(x), 通过最近邻找到embedding中与之最相近的向量z(q), 然后用z(q)替换z(x)。

相关推荐
weixin_4352081631 分钟前
如何使用 Qwen3 实现 Agentic RAG?
人工智能·深度学习·自然语言处理·aigc
小洛~·~1 小时前
多模态RAG与LlamaIndex——1.deepresearch调研
人工智能·python·深度学习·神经网络·chatgpt
AndrewHZ1 小时前
【图像处理基石】遥感图像分析入门
图像处理·人工智能·深度学习·计算机视觉·遥感图像·技术分析·多光谱
摆烂仙君2 小时前
浅论3DGS溅射模型在VR眼镜上的应用
人工智能·深度学习·vr
Elabscience2 小时前
白血病免疫微环境分析?Elabscience FITC-CD3抗体[OKT3]助您快速分型!
深度学习·健康医疗·业界资讯
sbc-study3 小时前
双向Transformer:BERT(Bidirectional Encoder Representations from Transformers)
深度学习·bert·transformer
aminghhhh4 小时前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态
努力毕业的小土博^_^5 小时前
【深度学习|学习笔记】 Generalized additive model广义可加模型(GAM)详解,附代码
人工智能·笔记·深度学习·神经网络·学习
天上路人5 小时前
采用AI神经网络降噪算法的语言降噪消回音处理芯片NR2049-P
深度学习·神经网络·算法·硬件架构·音视频·实时音视频·可用性测试
灬0灬灬0灬14 小时前
深度学习---常用优化器
人工智能·深度学习