GroupNet:基于多尺度神经网络的交互推理轨迹预测

2022 CVPR

论文:GroupNet: Multiscale Hypergraph Neural Networks for Trajectory Prediction with Relational Reasoning

1、介绍

过去的工作只考虑了有限关系推理的成对交互,因此提出了GroupNet,可以通过可训练的多尺度超图,用于对具有多个不同大小的群体交互进行建模,以数据驱动的方式学习这种多尺度超图拓扑,来提取更全面更群体化的交互;在学习时,为了学习交互embedding,提出三要素格式:神经交互强度、神经交互类别和每个类别函数

至少三个因素会影响智能体动态:

自我动量:已得到充分研究

瞬时意图:不可研究(MTR系列已经实现瞬时意图的学习)

社会交互:当前工作重点

2、GroupNet

GroupNet的核心是学习一个多尺度超图,其节点是智能体,超边是交互

详情可见DynGroupNet,当然在DynGroupNet中有所创新,具体是在平滑相关矩阵的变化处,但基本核心思想不变

神经网络信息传递也相同,最后得到智能体的embedding

3、GroupNet预测系统

3.1、编码阶段

首先将过去轨迹X-和未来轨迹X+分别输入给GroupNet,得到智能体未来和过去的embedding------V+和V-

将两个embedding连接后,分别通过两个MLP,得到未来轨迹分布的期望和方差,从该分布中采样得到潜变量z,和V-连接后输出为V_out

而在测试阶段,则从先验分布N~(0, λI)中采样,其中λ为一个超参数

3.2、解码阶段

残差解码器包含两个相同的解码快,输入V_out和X-(重建过去轨迹,避免信息丢失)

每个块由一个用于编码序列的 GRU 编码器和两个作为输出的 MLP 组成

最后再求和得到未来预测轨迹和重建过去轨迹

3.3、损失函数

损失由L2范数损失,KL散度损失,和多样性损失构成

相关推荐
MM_MS15 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
旅途中的宽~16 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1
齐齐大魔王16 小时前
Pascal VOC 数据集
人工智能·深度学习·数据集·voc
Hcoco_me17 小时前
RNN(循环神经网络)
人工智能·rnn·深度学习
kisshuan1239618 小时前
YOLO11-RepHGNetV2实现甘蔗田杂草与作物区域识别详解
人工智能·计算机视觉·目标跟踪
_codemonster19 小时前
高斯卷积的可加性定理
人工智能·计算机视觉
柠柠酱20 小时前
【深度学习Day5】决战 CIFAR-10:手把手教你搭建第一个“正经”的卷积神经网络 (附调参心法)
深度学习
gravity_w20 小时前
Hugging Face使用指南
人工智能·经验分享·笔记·深度学习·语言模型·nlp
Yeats_Liao21 小时前
MindSpore开发之路(二十六):系列总结与学习路径展望
人工智能·深度学习·学习·机器学习
UnderTurrets1 天前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d