GroupNet:基于多尺度神经网络的交互推理轨迹预测

2022 CVPR

论文:GroupNet: Multiscale Hypergraph Neural Networks for Trajectory Prediction with Relational Reasoning

1、介绍

过去的工作只考虑了有限关系推理的成对交互,因此提出了GroupNet,可以通过可训练的多尺度超图,用于对具有多个不同大小的群体交互进行建模,以数据驱动的方式学习这种多尺度超图拓扑,来提取更全面更群体化的交互;在学习时,为了学习交互embedding,提出三要素格式:神经交互强度、神经交互类别和每个类别函数

至少三个因素会影响智能体动态:

自我动量:已得到充分研究

瞬时意图:不可研究(MTR系列已经实现瞬时意图的学习)

社会交互:当前工作重点

2、GroupNet

GroupNet的核心是学习一个多尺度超图,其节点是智能体,超边是交互

详情可见DynGroupNet,当然在DynGroupNet中有所创新,具体是在平滑相关矩阵的变化处,但基本核心思想不变

神经网络信息传递也相同,最后得到智能体的embedding

3、GroupNet预测系统

3.1、编码阶段

首先将过去轨迹X-和未来轨迹X+分别输入给GroupNet,得到智能体未来和过去的embedding------V+和V-

将两个embedding连接后,分别通过两个MLP,得到未来轨迹分布的期望和方差,从该分布中采样得到潜变量z,和V-连接后输出为V_out

而在测试阶段,则从先验分布N~(0, λI)中采样,其中λ为一个超参数

3.2、解码阶段

残差解码器包含两个相同的解码快,输入V_out和X-(重建过去轨迹,避免信息丢失)

每个块由一个用于编码序列的 GRU 编码器和两个作为输出的 MLP 组成

最后再求和得到未来预测轨迹和重建过去轨迹

3.3、损失函数

损失由L2范数损失,KL散度损失,和多样性损失构成

相关推荐
zl_vslam1 小时前
SLAM中的非线性优-3D图优化之轴角在Opencv-PNP中的应用(一)
前端·人工智能·算法·计算机视觉·slam se2 非线性优化
B站_计算机毕业设计之家2 小时前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
Francek Chen2 小时前
【自然语言处理】预训练05:全局向量的词嵌入(GloVe)
人工智能·pytorch·深度学习·自然语言处理·glove
这张生成的图像能检测吗2 小时前
(论文速读)LyT-Net:基于YUV变压器的轻量级微光图像增强网络
图像处理·人工智能·计算机视觉·低照度
悠闲蜗牛�3 小时前
技术融合新纪元:深度学习、大数据与云原生的跨界实践
大数据·深度学习·云原生
却道天凉_好个秋7 小时前
OpenCV(十九):图像的加法运算
opencv·计算机视觉
嵌入式-老费7 小时前
自己动手写深度学习框架(感知机)
人工智能·深度学习
化作星辰7 小时前
使用 PyTorch来构建线性回归的实现
人工智能·pytorch·深度学习
谢景行^顾8 小时前
深度学习-损失函数
人工智能·深度学习