CNNs for image processing and other applications

CNNs for image processing and other applications


CNNs - convolutional neural networks

A structure to simulate the brain's visual cortex. They can both perform well in CV [object detection (classifying multiple objects in an image and placing bounding boxes around them) and semantic segmentation (classifying each pixel according to the class of the object it belongs to)] and NLP.

Why don't we use the Dense Layers? Although Dense Layers works well with MNIST dataset, they're hard to scale up (i.e., to deal with relative large image; e.g., 100 × 100) as the number of parameters will explode. CNN solves this problem by using partial connections and sharing weights.

CNNs actually use the similar "cross-correlations" operation instead of using "convolution".

Remark: these local receptive fields are rectangles

In real world, the image is hierarchical. This may be the reason that a stack of CNN layers succeed in image recognition.

Supplement 1: we have to line up input tensors as dense layers follow the principle: 1 sample, 1 vector (1D)

Supplement 2: tf.keras.layers.Conv2D allows input Tensor with the shape (batch_size, height, width, channels), which means we can pass it a 2D image directly

Spacing out the receptive fields to connect to a larger input layer. In this way, the computational burden of this model will be eased, dramatically.

The connection weights are just multiplying their values to the corresponding receptive field values, plused by respective bias terms. A set of these weights (excluding bias terms) is called a (convolutional) kernel (alias: a filter).

As usual, all these weights (which said, the filters) and the biases will be learned during training, and the layer corresponding to them will output a feature map given it a input.

In reality, a convolution layer will output one feature map per filter. Each pixel of a feature map pairs one neuron in a 2D layer (precisely we shall take a convolutional layer as a 3D layer, by stacking them together). Each feature map matches a pair of (kernel, bias), which is bijectively mapped onto a 2D layer.

In short, a convolutional layer simultaneously applies multiple trainable filters to its inputs, making it capable of detecting multiple features anywhere in its inputs.

There're many advantages (which surpass dense layers) of sharing kernels and bias terms in one "2D layer"/feature map, including:

  1. reducing the computation complexity greatly
  2. learning a feature in someplace and transfer into anywhere of input image

Computing the output of a neuron in a convolutional layer

the output of a neuron in one convolutional layer located in ( i , j , f e a t u r e m a p i d ) = b i a s ( f e a t u r e m a p i d ) + ∑ the output of one neuron of previous layer located in ( i ′ , j ′ , f e a t u r e m a p i d ′ ) × weight ( f e a t u r e m a p i d , f e a t u r e m a p i d ′ , i n t h e c e l l o f x t h r o w o f r e c e p t i v e f i e l d , i n t h e c e l l o f y t h c o l u m n o f r e c e p t i v e f i e l d ) \text{the output of a neuron in one convolutional layer located in}(i, j, feature~map~id)\\ = bias(feature~map~id) + \sum\\\text{the output of one neuron of previous layer located in}(i', j', feature~map~id')\times\text{weight}(feature~map~id, feature~map~id', in~the~cell~of~x_{th}~row~of~receptive~field, in~the~cell~of~y_{th}~column~of~receptive~field) the output of a neuron in one convolutional layer located in(i,j,feature map id)=bias(feature map id)+∑the output of one neuron of previous layer located in(i′,j′,feature map id′)×weight(feature map id,feature map id′,in the cell of xth row of receptive field,in the cell of yth column of receptive field)

w i t h with with

i ′ = i × s t r i d e h e i g h t + x , x + 1 ∈ [ 1 , f i e l d h e i g h t ] i'=i\times stride_{height}+x, x+1\in[1, field_{height}] i′=i×strideheight+x,x+1∈[1,fieldheight], j ′ = j × s t r i d e w i d t h + y , y + 1 ∈ [ 1 , f i e l d w i d t h ] j'=j\times stride_{width}+y, y+1\in[1, field_{width}] j′=j×stridewidth+y,y+1∈[1,fieldwidth]

python 复制代码
import tensorflow as tf
import matplotlib.pyplot as plt

from sklearn.datasets import load_sample_images
dataset = load_sample_images()['images']
im1, im2 = dataset

_, ax = plt.subplots(1, 2)
ax[0].imshow(im1)
ax[1].imshow(im2)
plt.show()

im1.max(), im1.min(), im2.max(), im2.min()

print(tuple(map(lambda x: x.dtype, dataset)))

print(tuple(map(lambda x: x.shape, dataset)))

dataset = tf.keras.layers.Rescaling(1/255)(tf.keras.layers.CenterCrop(height=70, width=120)(dataset))

dataset.shape

More about tf.keras.layers.Conv2D:

  1. tf.keras.layers.Conv2D = tf.keras.layers.Convolution2D
  2. under the hood, this layer relies on TensorFlow's tf.nn.conv2d() operation
  3. kernel_size defines the shape of reception field
  4. by default, strides is set to (1, 1) and padding="valid" (which actually means no zero-padding at all)

Conv2D accepts Tensors of shape (batch_size, spacial_dimension_1, spatial_dimension_2, channels)

We can consider channels as color filters.

python 复制代码
Conv2D = tf.keras.layers.Conv2D(filters=32, kernel_size=7) # equivalent to using kernel_size=(7 , 7)
feature_map = Conv2D(dataset)
feature_map.shape

64 = 70 - 7 + 1

114 = 120 - 7 + 1

python 复制代码
Conv2D = tf.keras.layers.Conv2D(filters=32, kernel_size=7, padding='same') # pad with zeros to make shapes the same
feature_map = Conv2D(dataset)
feature_map.shape

Under the hood: how to pad with 0s?

padding='valid':
find the maximal O u t p u t G r i d s s . t . 1 + S t r i d e s × ( O u t p u t G r i d s − 1 ) + ( K e r n e l S i z e − 1 ) ≤ I n p u t G r i d s O u t p u t G r i d s ≤ I n p u t G r i d s − K e r n e l S i z e + S t r i d e s S t r i d e s Therefore: O u t p u t G r i d s = ⌊ I n p u t G r i d s − K e r n e l S i z e + S t r i d e s S t r i d e s ⌋ \text{find the maximal }OutputGrids \\ s.t. \\ 1 + Strides \times (OutputGrids-1) + (KernelSize-1) \le InputGrids \\ OutputGrids \le \frac{InputGrids-KernelSize+Strides}{Strides} \\ \text{Therefore:}~OutputGrids=\lfloor\frac{InputGrids-KernelSize+Strides}{Strides}\rfloor find the maximal OutputGridss.t.1+Strides×(OutputGrids−1)+(KernelSize−1)≤InputGridsOutputGrids≤StridesInputGrids−KernelSize+StridesTherefore: OutputGrids=⌊StridesInputGrids−KernelSize+Strides⌋

padding = 'same':
we confine the O u t p u t G r i d s s . t . O u t p u t G r i d s = ⌈ I n p u t G r i d s S t r i d e s ⌉ Therefore we can compute the I n p u t G r i d s A f t e r P a d d i n g = K e r n e l S i z e + ( O u t p u t G r i d s − 1 ) × S t r i d e s So we shall pad ⌊ I n p u t G r i d s A f t e r P a d d i n g − I n p u t G r i d s 2 ⌋ , ⌈ I n p u t G r i d s A f t e r P a d d i n g − I n p u t G r i d s 2 ⌉ 0s on each side \text{we confine the }OutputGrids~s.t.~OutputGrids=\lceil\frac{InputGrids}{Strides}\rceil \\ \text{Therefore we can compute the }InputGridsAfterPadding=KernelSize+(OutputGrids-1)\times Strides \\ \text{So we shall pad }\lfloor\frac{InputGridsAfterPadding - InputGrids}2\rfloor, \lceil\frac{InputGridsAfterPadding - InputGrids}2\rceil\text{ 0s on each side} we confine the OutputGrids s.t. OutputGrids=⌈StridesInputGrids⌉Therefore we can compute the InputGridsAfterPadding=KernelSize+(OutputGrids−1)×StridesSo we shall pad ⌊2InputGridsAfterPadding−InputGrids⌋,⌈2InputGridsAfterPadding−InputGrids⌉ 0s on each side

python 复制代码
kernels, biases = Conv2D.weights # this attribute will return Tensors; if we use get_weights() method instead, numpy arrays will be returned

kernels.shape # [kernel_height, kernel_width, input_channels, output_channels]

biases.shape # [output_channels]

We can feed images of any size to this layer, as long as they are at least as large as the kernels, and if they have the right number of channels.

Specifying an activation function (such as ReLU) when creating a Conv2D layer, and also specifying the corresponding kernel initializer (such as He initialization) is useful, otherwise consecutively stacked convolutional layers are equivalent to one convolutional layer.

Hyperparameters Summary: filters, kernel_size, padding, strides, activation, kernel_initializer, etc.

相关推荐
Juicedata6 小时前
JuiceFS v1.3-Beta2:集成 Apache Ranger,实现更精细化的权限控制
运维·人工智能·ai
FrankHuang88814 小时前
使用高斯朴素贝叶斯算法对鸢尾花数据集进行分类
算法·机器学习·ai·分类
武子康14 小时前
AI炼丹日志-28 - Audiblez 将你的电子书epub转换为音频mp3 做有声书
人工智能·爬虫·gpt·算法·机器学习·ai·音视频
张铁牛15 小时前
2. LangChain4j-AIServices,原来调用AI这么简单?
ai·langchain4j
宝桥南山19 小时前
DeepSeek - 尝试一下GitHub Models中的DeepSeek
microsoft·ai·微软·c#·github·.net
wang_yb21 小时前
稀疏表示与字典学习:让数据“瘦身”的魔法
ai·databook
探索云原生1 天前
开源 vGPU 方案:HAMi,实现细粒度 GPU 切分
ai·云原生·kubernetes·gpu
张铁牛2 天前
1. LangChain4j 初识,想使用Java开发AI应用?
ai·langchain4j
无声旅者2 天前
n8n:解锁自动化工作流的无限可能
ai·自动化·oneapi·ai大模型·n8n
在荒野的梦想2 天前
DeepSeek+SpringAI实现流式对话
java·ai