CNNs for image processing and other applications

CNNs for image processing and other applications


CNNs - convolutional neural networks

A structure to simulate the brain's visual cortex. They can both perform well in CV [object detection (classifying multiple objects in an image and placing bounding boxes around them) and semantic segmentation (classifying each pixel according to the class of the object it belongs to)] and NLP.

Why don't we use the Dense Layers? Although Dense Layers works well with MNIST dataset, they're hard to scale up (i.e., to deal with relative large image; e.g., 100 × 100) as the number of parameters will explode. CNN solves this problem by using partial connections and sharing weights.

CNNs actually use the similar "cross-correlations" operation instead of using "convolution".

Remark: these local receptive fields are rectangles

In real world, the image is hierarchical. This may be the reason that a stack of CNN layers succeed in image recognition.

Supplement 1: we have to line up input tensors as dense layers follow the principle: 1 sample, 1 vector (1D)

Supplement 2: tf.keras.layers.Conv2D allows input Tensor with the shape (batch_size, height, width, channels), which means we can pass it a 2D image directly

Spacing out the receptive fields to connect to a larger input layer. In this way, the computational burden of this model will be eased, dramatically.

The connection weights are just multiplying their values to the corresponding receptive field values, plused by respective bias terms. A set of these weights (excluding bias terms) is called a (convolutional) kernel (alias: a filter).

As usual, all these weights (which said, the filters) and the biases will be learned during training, and the layer corresponding to them will output a feature map given it a input.

In reality, a convolution layer will output one feature map per filter. Each pixel of a feature map pairs one neuron in a 2D layer (precisely we shall take a convolutional layer as a 3D layer, by stacking them together). Each feature map matches a pair of (kernel, bias), which is bijectively mapped onto a 2D layer.

In short, a convolutional layer simultaneously applies multiple trainable filters to its inputs, making it capable of detecting multiple features anywhere in its inputs.

There're many advantages (which surpass dense layers) of sharing kernels and bias terms in one "2D layer"/feature map, including:

  1. reducing the computation complexity greatly
  2. learning a feature in someplace and transfer into anywhere of input image

Computing the output of a neuron in a convolutional layer

the output of a neuron in one convolutional layer located in ( i , j , f e a t u r e m a p i d ) = b i a s ( f e a t u r e m a p i d ) + ∑ the output of one neuron of previous layer located in ( i ′ , j ′ , f e a t u r e m a p i d ′ ) × weight ( f e a t u r e m a p i d , f e a t u r e m a p i d ′ , i n t h e c e l l o f x t h r o w o f r e c e p t i v e f i e l d , i n t h e c e l l o f y t h c o l u m n o f r e c e p t i v e f i e l d ) \text{the output of a neuron in one convolutional layer located in}(i, j, feature~map~id)\\ = bias(feature~map~id) + \sum\\\text{the output of one neuron of previous layer located in}(i', j', feature~map~id')\times\text{weight}(feature~map~id, feature~map~id', in~the~cell~of~x_{th}~row~of~receptive~field, in~the~cell~of~y_{th}~column~of~receptive~field) the output of a neuron in one convolutional layer located in(i,j,feature map id)=bias(feature map id)+∑the output of one neuron of previous layer located in(i′,j′,feature map id′)×weight(feature map id,feature map id′,in the cell of xth row of receptive field,in the cell of yth column of receptive field)

w i t h with with

i ′ = i × s t r i d e h e i g h t + x , x + 1 ∈ [ 1 , f i e l d h e i g h t ] i'=i\times stride_{height}+x, x+1\in[1, field_{height}] i′=i×strideheight+x,x+1∈[1,fieldheight], j ′ = j × s t r i d e w i d t h + y , y + 1 ∈ [ 1 , f i e l d w i d t h ] j'=j\times stride_{width}+y, y+1\in[1, field_{width}] j′=j×stridewidth+y,y+1∈[1,fieldwidth]

python 复制代码
import tensorflow as tf
import matplotlib.pyplot as plt

from sklearn.datasets import load_sample_images
dataset = load_sample_images()['images']
im1, im2 = dataset

_, ax = plt.subplots(1, 2)
ax[0].imshow(im1)
ax[1].imshow(im2)
plt.show()

im1.max(), im1.min(), im2.max(), im2.min()

print(tuple(map(lambda x: x.dtype, dataset)))

print(tuple(map(lambda x: x.shape, dataset)))

dataset = tf.keras.layers.Rescaling(1/255)(tf.keras.layers.CenterCrop(height=70, width=120)(dataset))

dataset.shape

More about tf.keras.layers.Conv2D:

  1. tf.keras.layers.Conv2D = tf.keras.layers.Convolution2D
  2. under the hood, this layer relies on TensorFlow's tf.nn.conv2d() operation
  3. kernel_size defines the shape of reception field
  4. by default, strides is set to (1, 1) and padding="valid" (which actually means no zero-padding at all)

Conv2D accepts Tensors of shape (batch_size, spacial_dimension_1, spatial_dimension_2, channels)

We can consider channels as color filters.

python 复制代码
Conv2D = tf.keras.layers.Conv2D(filters=32, kernel_size=7) # equivalent to using kernel_size=(7 , 7)
feature_map = Conv2D(dataset)
feature_map.shape

64 = 70 - 7 + 1

114 = 120 - 7 + 1

python 复制代码
Conv2D = tf.keras.layers.Conv2D(filters=32, kernel_size=7, padding='same') # pad with zeros to make shapes the same
feature_map = Conv2D(dataset)
feature_map.shape

Under the hood: how to pad with 0s?

padding='valid':
find the maximal O u t p u t G r i d s s . t . 1 + S t r i d e s × ( O u t p u t G r i d s − 1 ) + ( K e r n e l S i z e − 1 ) ≤ I n p u t G r i d s O u t p u t G r i d s ≤ I n p u t G r i d s − K e r n e l S i z e + S t r i d e s S t r i d e s Therefore: O u t p u t G r i d s = ⌊ I n p u t G r i d s − K e r n e l S i z e + S t r i d e s S t r i d e s ⌋ \text{find the maximal }OutputGrids \\ s.t. \\ 1 + Strides \times (OutputGrids-1) + (KernelSize-1) \le InputGrids \\ OutputGrids \le \frac{InputGrids-KernelSize+Strides}{Strides} \\ \text{Therefore:}~OutputGrids=\lfloor\frac{InputGrids-KernelSize+Strides}{Strides}\rfloor find the maximal OutputGridss.t.1+Strides×(OutputGrids−1)+(KernelSize−1)≤InputGridsOutputGrids≤StridesInputGrids−KernelSize+StridesTherefore: OutputGrids=⌊StridesInputGrids−KernelSize+Strides⌋

padding = 'same':
we confine the O u t p u t G r i d s s . t . O u t p u t G r i d s = ⌈ I n p u t G r i d s S t r i d e s ⌉ Therefore we can compute the I n p u t G r i d s A f t e r P a d d i n g = K e r n e l S i z e + ( O u t p u t G r i d s − 1 ) × S t r i d e s So we shall pad ⌊ I n p u t G r i d s A f t e r P a d d i n g − I n p u t G r i d s 2 ⌋ , ⌈ I n p u t G r i d s A f t e r P a d d i n g − I n p u t G r i d s 2 ⌉ 0s on each side \text{we confine the }OutputGrids~s.t.~OutputGrids=\lceil\frac{InputGrids}{Strides}\rceil \\ \text{Therefore we can compute the }InputGridsAfterPadding=KernelSize+(OutputGrids-1)\times Strides \\ \text{So we shall pad }\lfloor\frac{InputGridsAfterPadding - InputGrids}2\rfloor, \lceil\frac{InputGridsAfterPadding - InputGrids}2\rceil\text{ 0s on each side} we confine the OutputGrids s.t. OutputGrids=⌈StridesInputGrids⌉Therefore we can compute the InputGridsAfterPadding=KernelSize+(OutputGrids−1)×StridesSo we shall pad ⌊2InputGridsAfterPadding−InputGrids⌋,⌈2InputGridsAfterPadding−InputGrids⌉ 0s on each side

python 复制代码
kernels, biases = Conv2D.weights # this attribute will return Tensors; if we use get_weights() method instead, numpy arrays will be returned

kernels.shape # [kernel_height, kernel_width, input_channels, output_channels]

biases.shape # [output_channels]

We can feed images of any size to this layer, as long as they are at least as large as the kernels, and if they have the right number of channels.

Specifying an activation function (such as ReLU) when creating a Conv2D layer, and also specifying the corresponding kernel initializer (such as He initialization) is useful, otherwise consecutively stacked convolutional layers are equivalent to one convolutional layer.

Hyperparameters Summary: filters, kernel_size, padding, strides, activation, kernel_initializer, etc.

相关推荐
onlyellow11 小时前
【RAGFlow】ubuntu22部署ragflow(v0.17.2)
ai
Elastic 中国社区官方博客20 小时前
Elasticsearch:理解政府中的人工智能 - 应用、使用案例和实施
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·全文检索
小白跃升坊1 天前
如何优化和提高MaxKB回答的质量和准确性?
ai·大语言模型·max kb
wang_yb1 天前
直线思维的进化:线性到广义线性
ai·databook
0泡2 天前
机器学习、深度学习和神经网络
深度学习·神经网络·机器学习·ai
jamison_12 天前
文心一言与 DeepSeek 的竞争分析:技术先发优势为何未能转化为市场主导地位?
人工智能·ai·chatgpt·gpt-3·1024程序员节
chaodaibing2 天前
测试cursor-AI编辑器
ai·cursor
厌世小晨宇yu.2 天前
对Gpt关于泛型、Stream的提问
java·开发语言·gpt·ai
Tester_孙大壮2 天前
通过Appium理解MCP架构
人工智能·ai·语言模型