支持视频检测, YOLOv12 目标检测刷新速度、精度双记录

长期以来,增强 YOLO 框架的网络架构一直是计算机视觉领域的核心课题。尽管注意力机制在建模能力上表现出色,但基于 CNN 的改进仍然是主流,因为基于注意力的模型在速度上难以匹敌。然而,YOLOv12 的推出改变了这一局面!它不仅在速度上与基于 CNN 的框架相媲美,还充分利用了注意力机制的性能优势,成为实时物体检测的新标杆。

YOLOv12 的突破性表现:

  • YOLOv12-N 在 T4 GPU 上以 1.64 毫秒 的推理延迟实现了 40.6% 的 mAP,比 YOLOv10-N / YOLOv11-N 高出 2.1%/1.2% 的 mAP。
  • YOLOv12-S 击败了 RT-DETR-R18 / RT-DETRv2-R18,运行速度提高了 42%,计算量仅用了 36%,参数减少了 45%。

教程链接:go.openbayes.com/tBHzt

使用云平台:OpenBayes
openbayes.com/console/sig...

登录 OpenBayes.com,在「公共教程」页面,选择键部署 「一键部署 YOLOv12」教程。

页面跳转后,点击右上角「克隆」,将该教程克隆至自己的容器中。

选择「NVIDIA GeForce RTX 4090」以及「PyTorch」镜像,OpenBayes 平台提供了 4 种计费方式,大家可以按照需求选择「按量付费」或「包日/周/月」,点击「继续执行」。可以使用文章开头的邀请链接,获得 RTX 4090 使用时长!

待系统分配好资源,当状态变为「运行中」后,点击「API 地址」边上的跳转箭头,即可跳转至 Demo 页面。

该模型支持图片检测和视频检测,目标检测的输出是一组包围图像中物体的边框,以及每个边框的类标签和置信度分数。

1.图片检测

在「Input Type」一栏选择「Image」,上传一张图片,在「Model」处选择模型,默认为「yolov12m.pt」。最后点击「Detect Objects」开始检测。

2.视频检测

在「Input Type」一栏选择「Video」,上传一段视频,在「Model」处选择模型,默认为「yolov12m.pt」。最后点击「Detect Objects」开始检测。

相关推荐
Blossom.11824 分钟前
基于深度学习的医学图像分析:使用DeepLabv3+实现医学图像分割
人工智能·python·深度学习·yolo·目标检测·机器学习·迁移学习
808&Heartbreak*28 分钟前
CNN实战项目
人工智能·神经网络·cnn
大公产经晚间消息32 分钟前
网易云音乐硬刚腾讯系!起诉SM娱乐滥用市场支配地位
大数据·人工智能·娱乐
李子圆圆36 分钟前
电力设施通道防外破防异物实时监控预警装置的核心功能是什么
人工智能·语音识别
mit6.82441 分钟前
[Agent开发平台] API网关 | 业务领域 | DTO格式 | 分页令牌
人工智能·golang·状态模式
黎燃1 小时前
工业机器人中的计算机视觉质检系统:从算法到产线落地的全流程指南
人工智能
vjmap1 小时前
MCP协议:CAD地图应用的AI智能化解决方案(唯杰地图MCP)
前端·人工智能·gis
一尘之中2 小时前
阿难尊者的末法时代“系统架构”之问
人工智能·系统架构·ai写作
潮湿的心情2 小时前
中宇联:以“智云融合+AI”赋能全栈云MSP服务,深化阿里云生态合作
人工智能·阿里云·云计算
云布道师2 小时前
【云故事探索】NO.16:阿里云弹性计算加速精准学 AI 教育普惠落地
人工智能·阿里云·云计算