支持视频检测, YOLOv12 目标检测刷新速度、精度双记录

长期以来,增强 YOLO 框架的网络架构一直是计算机视觉领域的核心课题。尽管注意力机制在建模能力上表现出色,但基于 CNN 的改进仍然是主流,因为基于注意力的模型在速度上难以匹敌。然而,YOLOv12 的推出改变了这一局面!它不仅在速度上与基于 CNN 的框架相媲美,还充分利用了注意力机制的性能优势,成为实时物体检测的新标杆。

YOLOv12 的突破性表现:

  • YOLOv12-N 在 T4 GPU 上以 1.64 毫秒 的推理延迟实现了 40.6% 的 mAP,比 YOLOv10-N / YOLOv11-N 高出 2.1%/1.2% 的 mAP。
  • YOLOv12-S 击败了 RT-DETR-R18 / RT-DETRv2-R18,运行速度提高了 42%,计算量仅用了 36%,参数减少了 45%。

教程链接:go.openbayes.com/tBHzt

使用云平台:OpenBayes
openbayes.com/console/sig...

登录 OpenBayes.com,在「公共教程」页面,选择键部署 「一键部署 YOLOv12」教程。

页面跳转后,点击右上角「克隆」,将该教程克隆至自己的容器中。

选择「NVIDIA GeForce RTX 4090」以及「PyTorch」镜像,OpenBayes 平台提供了 4 种计费方式,大家可以按照需求选择「按量付费」或「包日/周/月」,点击「继续执行」。可以使用文章开头的邀请链接,获得 RTX 4090 使用时长!

待系统分配好资源,当状态变为「运行中」后,点击「API 地址」边上的跳转箭头,即可跳转至 Demo 页面。

该模型支持图片检测和视频检测,目标检测的输出是一组包围图像中物体的边框,以及每个边框的类标签和置信度分数。

1.图片检测

在「Input Type」一栏选择「Image」,上传一张图片,在「Model」处选择模型,默认为「yolov12m.pt」。最后点击「Detect Objects」开始检测。

2.视频检测

在「Input Type」一栏选择「Video」,上传一段视频,在「Model」处选择模型,默认为「yolov12m.pt」。最后点击「Detect Objects」开始检测。

相关推荐
人工智能训练3 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海3 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor5 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19825 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了5 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队5 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒5 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6006 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房6 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20116 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习