支持视频检测, YOLOv12 目标检测刷新速度、精度双记录

长期以来,增强 YOLO 框架的网络架构一直是计算机视觉领域的核心课题。尽管注意力机制在建模能力上表现出色,但基于 CNN 的改进仍然是主流,因为基于注意力的模型在速度上难以匹敌。然而,YOLOv12 的推出改变了这一局面!它不仅在速度上与基于 CNN 的框架相媲美,还充分利用了注意力机制的性能优势,成为实时物体检测的新标杆。

YOLOv12 的突破性表现:

  • YOLOv12-N 在 T4 GPU 上以 1.64 毫秒 的推理延迟实现了 40.6% 的 mAP,比 YOLOv10-N / YOLOv11-N 高出 2.1%/1.2% 的 mAP。
  • YOLOv12-S 击败了 RT-DETR-R18 / RT-DETRv2-R18,运行速度提高了 42%,计算量仅用了 36%,参数减少了 45%。

教程链接:go.openbayes.com/tBHzt

使用云平台:OpenBayes
openbayes.com/console/sig...

登录 OpenBayes.com,在「公共教程」页面,选择键部署 「一键部署 YOLOv12」教程。

页面跳转后,点击右上角「克隆」,将该教程克隆至自己的容器中。

选择「NVIDIA GeForce RTX 4090」以及「PyTorch」镜像,OpenBayes 平台提供了 4 种计费方式,大家可以按照需求选择「按量付费」或「包日/周/月」,点击「继续执行」。可以使用文章开头的邀请链接,获得 RTX 4090 使用时长!

待系统分配好资源,当状态变为「运行中」后,点击「API 地址」边上的跳转箭头,即可跳转至 Demo 页面。

该模型支持图片检测和视频检测,目标检测的输出是一组包围图像中物体的边框,以及每个边框的类标签和置信度分数。

1.图片检测

在「Input Type」一栏选择「Image」,上传一张图片,在「Model」处选择模型,默认为「yolov12m.pt」。最后点击「Detect Objects」开始检测。

2.视频检测

在「Input Type」一栏选择「Video」,上传一段视频,在「Model」处选择模型,默认为「yolov12m.pt」。最后点击「Detect Objects」开始检测。

相关推荐
Dev7z16 分钟前
面向公共场所的吸烟行为视觉检测系统研究
人工智能·计算机视觉·视觉检测
橙露21 分钟前
视觉检测硬件分析
人工智能·计算机视觉·视觉检测
长桥夜波1 小时前
机器学习日报21
人工智能·机器学习
rchmin1 小时前
Prompt Engineering 从入门到精通的系统学习路径
人工智能·学习·prompt
ACE19851 小时前
AI Agent 设计模式深度解析:提示链(Prompt Chaining)模式
人工智能·设计模式·prompt
AndrewHZ1 小时前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性
AndrewHZ1 小时前
【图像处理基石】图像处理的基础理论体系介绍
图像处理·人工智能·算法·计算机视觉·cv·理论体系
人邮异步社区1 小时前
如何有效地利用AI辅助编程,提高编程效率?
人工智能·深度学习·ai编程
星星上的吴彦祖2 小时前
多模态感知驱动的人机交互决策研究综述
python·深度学习·计算机视觉·人机交互