【工具】BioPred一个用于精准医疗中生物标志物分析的 R 软件包

介绍

R 语言包 BioPred 提供了一系列用于精准医疗中的亚组分析和生物标志物分析的工具。它借助极端梯度提升(XGBoost)算法,并结合倾向得分加权和 A 学习方法,帮助优化个体化治疗规则,从而简化亚组识别过程。BioPred 还能够识别预测性生物标志物,并获取其重要性排名。此外,该包还提供了针对生物标志物分析定制的图形图表。这一工具使临床研究人员能够加深对药物开发中生物标志物和患者群体的理解。

The R package BioPred offers a suite of tools for subgroup and biomarker analysis in precision medicine. Leveraging Extreme Gradient Boosting (XGBoost) along with propensity score weighting and A-learning methods, BioPred facilitates the optimization of individualized treatment rules to streamline subgroup identification. BioPred also enables the identification of predictive biomarkers and obtaining their importance rankings. Moreover, the package provides graphical plots tailored for biomarker analysis. This tool enables clinical researchers seeking to enhance their understanding of biomarkers and patient population in drug development.

代码

https://github.com/deeplearner0731/BioPred

文章目录

案例

安装

r 复制代码
install.packages("BioPred")

devtools::install_github("deeplearner0731/BioPred")

运行代码: https://cran.r-project.org/web/packages/BioPred/vignettes/Tutorial.html

r 复制代码
model = XGBoostSub_bin(X, y, trt, pi,Loss_type = "A_learning", params = list(learning_rate = 0.01, max_depth = 1, lambda = 5, tree_method = 'hist'), nrounds = 300, disable_default_eval_metric = 0, verbose = FALSE)

get_subgroup_results(model, X)

eval_metric_bin(model, X, y, pi, trt, Loss_type = "A_learning")

predictive_biomarker_imp(model)

fixcut_bin(yvar="y", xvar="x1", dir=">", cutoffs=c(0.1,0.3,0.5), data=tutorial_data, method="Fisher", yvar.display="y", xvar.display="Biomarker x1", vert.x=F)

res=cut_perf(yvar="y", censorvar=NULL, xvar="x1", cutoff=c(0.5), dir=">", xvars.adj=NULL, data=tutorial_data, type="c", yvar.display="y", xvar.display="Biomarker x1")

res = subgrp_perf_pred(yvar="y.time", censorvar="y.event", grpvar="biogroup", grpname=c("biomarker_positive",'biomarker_negative'),trtvar="treatment_categorical", trtname=c("Placebo", "Treatment"), xvars.adj=NULL,data=tutorial_data, type="s")

gam_ctr_plot(yvar="y.time", censorvar="y.event", xvar= "x1", xvars.adj=NULL,sxvars.adj=NULL,trtvar="trt",type="s",data=tutorial_data, k=5, title="Group Contrast", ybreaks=NULL, xbreaks=NULL, rugcol.var=NULL,link.scale=T, prt.sum=T, prt.chk=F, outlier.rm=F)

roc_bin_plot(yvar="y", xvars="x1", dirs="auto", data=tutorial_data, yvar.display="y.bin", xvars.display="Biomarker x1")

参考

相关推荐
invincible_Tang19 分钟前
R格式 (15届B) 高精度
开发语言·算法·r语言
KY_chenzhao2 小时前
基于R语言与MaxEnt的物种分布建模全流程解析:从算法优化到科研制图实战
r语言·maxent·气候变化·物种分布
tRNA做科研2 小时前
通过Bioconductor/BiocManager安装生物r包详解(问题汇总)
开发语言·r语言·生物信息学·bioconductor·biocmanager
Tiger Z2 小时前
R 语言科研绘图 --- 韦恩图-汇总
开发语言·程序人生·r语言·贴图
dundunmm4 小时前
【论文阅读】Self-Correcting Clustering
论文阅读·深度学习·数据挖掘·聚类
SelectDB6 小时前
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
大数据·数据库·数据分析
冷月半明7 小时前
《Pandas 性能优化:向量化操作 vs. Swifter 加速,谁才是大数据处理的救星?》
python·数据分析·pandas
alicia23227 小时前
一文揭秘AI如何像庖丁解牛一样拆解复杂查询
数据分析
卑微小文8 小时前
消费金融用户画像构建:代理 IP 整合多维度信息
爬虫·数据挖掘·数据分析