StarRocks的执行计划和Profile

文章目录

  • 一、执行计划和Profile相关脚本
  • 二、如何分析查询
    • 1、概念了解
    • [2、Query Plan](#2、Query Plan)
      • [①查看 Query Plan](#①查看 Query Plan)
      • [②分析 Query Plan](#②分析 Query Plan)
    • [3、Query hint](#3、Query hint)
    • [4、Query Profile](#4、Query Profile)
      • [①启用 Query Profile](#①启用 Query Profile)
      • [②查看 Query Profile](#②查看 Query Profile)
      • [③分析 Query Profile](#③分析 Query Profile)

一、执行计划和Profile相关脚本

命令 功能
ANALYZE PROFILE 以 Fragment 为单位分析指定 Query Profile,并以树形结构展示。更多信息,参考 Query Profile 概述
EXPLAIN 显示输入查询语句的逻辑或物理执行计划。关于如何分析查询计划,请参考 分析 Query Plan
EXPLAIN ANALYZE 执行指定 SQL,并显示相应的 Query Profile 文件。更多信息,参考 Query Profile 概述
SHOW PROFILELIST 列出 StarRocks 集群中缓存的 Query Profile 记录。更多信息,参考 Query Profile 概述

更多详情点击进入官网学习查看: https://docs.mirrorship.cn/zh/docs/category/sql-statements/

二、如何分析查询

1、概念了解

StarRocks 每个查询对应一个 QueryID。您可以在日志或者页面中查找到查询对应的 Query Plan 和 Profile。Query Plan 是 FE 通过解析 SQL 生成的执行计划,而 Profile 是 BE 执行查询后的结果,包含了每一步的耗时和数据处理量等数据。

2、Query Plan

SQL 语句在 StarRocks 中的生命周期可以分为查询解析(Query Parsing)、规划(Query Plan)、执行(Query Execution)三个阶段。

决定 StarRocks 中查询性能的关键就在于查询规划(Query Plan)和查询执行(Query Execution),二者的关系可以描述为 Query Plan 负责组织算子(Join/Order/Aggregation)之间的关系,Query Execution 负责执行具体算子。

Query Plan 可以为数据库管理者提供一个宏观的视角,从而获取查询执行的相关信息。优秀的 Query Plan 很大程度上决定了查询的性能,所以数据库管理者需要频繁查看 Query Plan,以确保其是否生成得当。

①查看 Query Plan

sql 复制代码
EXPLAIN sql_statement;
sql 复制代码
"Explain String"
"PLAN FRAGMENT 0"
" OUTPUT EXPRS:3: store_id | 6: sum"
"  PARTITION: UNPARTITIONED"
""
"  RESULT SINK"
""
"  4:EXCHANGE"
""
"PLAN FRAGMENT 1"
" OUTPUT EXPRS:"
"  PARTITION: HASH_PARTITIONED: 3: store_id"
""
"  STREAM DATA SINK"
"    EXCHANGE ID: 04"
"    UNPARTITIONED"
""
"  3:AGGREGATE (merge finalize)"
"  |  output: sum(6: sum)"
"  |  group by: 3: store_id"
"  |  "
"  2:EXCHANGE"
""
"PLAN FRAGMENT 2"
" OUTPUT EXPRS:"
"  colocate exec groups: ExecGroup{groupId=1, nodeIds=[0, 1]}"
"  PARTITION: RANDOM"
""
"  STREAM DATA SINK"
"    EXCHANGE ID: 02"
"    HASH_PARTITIONED: 3: store_id"
""
"  1:AGGREGATE (update serialize)"
"  |  STREAMING"
"  |  output: sum(5: sale_amt)"
"  |  group by: 3: store_id"
"  |  "
"  0:OlapScanNode"
"     TABLE: sales_records"
"     PREAGGREGATION: ON"
"     partitions=1/1"
"     rollup: sales_records"
"     tabletRatio=16/16"
"     tabletList=16197,16201,16205,16209,16213,16217,16221,16225,16229,16233 ..."
"     cardinality=16"
"     avgRowSize=12.0"

②分析 Query Plan

名称 解释
avgRowSize 扫描数据行的平均大小。
cardinality 扫描表的数据总行数。
colocate 表是否采用了 Colocate 形式。
numNodes 扫描涉及的节点数。
rollup 物化视图。
preaggregation 预聚合。
predicates 谓词,也就是查询过滤条件。
partitions 分区。
table 表。

3、Query hint

如果需要指定创建物化视图的子查询执行超时时间,可以在 SELECT 子句中使用 SET_VAR hint 设置系统变量 query_timeout。

sql 复制代码
CREATE MATERIALIZED VIEW mv 
    PARTITION BY dt 
    DISTRIBUTED BY HASH(`key`) 
    BUCKETS 10 
    REFRESH ASYNC 
    AS SELECT /*+ SET_VAR(query_timeout=500) */ * from dual;

4、Query Profile

①启用 Query Profile

sql 复制代码
SET enable_profile = true;

通过设置变量 big_query_profile_threshold 设置超过 30 秒的查询会启用 Query Profile 功能。这样既保证了系统性能,又能有效监控到慢查询。

sql 复制代码
-- 30 seconds
SET global big_query_profile_threshold = '30s';

-- 500 milliseconds
SET global big_query_profile_threshold = '500ms';

-- 60 minutes
SET global big_query_profile_threshold = '60m';

Query Profile 启用时,Runtime Query Profile会自动启用,默认的上报时间间隔为 10 秒。您可以通过修改变量 runtime_profile_report_interval 来调整对应的时间间隔:

sql 复制代码
SET runtime_profile_report_interval = 30;

②查看 Query Profile

sql 复制代码
SHOW PROFILELIST;
SHOW PROFILELIST LIMIT 5;

取得 Query ID 后,您可以通过 ANALYZE PROFILE 语句对 Query Profile 进行下一步的分析,其语法如下:

sql 复制代码
ANALYZE PROFILE FROM '<Query_ID>' [, <Node_ID> [, ...] ]

ANALYZE PROFILE FROM '762befbf-0d9e-11f0-95b5-0648ec1d9f38';

③分析 Query Profile

Query Profile 结构与详细指标

相关推荐
lili-felicity1 分钟前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
2501_9336707931 分钟前
2026 高职大数据专业考什么证书对就业有帮助?
大数据
xiaobaibai15340 分钟前
营销自动化终极形态:AdAgent 自主闭环工作流全解析
大数据·人工智能·自动化
星辰_mya1 小时前
Elasticsearch更新了分词器之后
大数据·elasticsearch·搜索引擎
xiaobaibai1531 小时前
决策引擎深度拆解:AdAgent 用 CoT+RL 实现营销自主化决策
大数据·人工智能
悟纤1 小时前
学习与专注音乐流派 (Study & Focus Music):AI 音乐创作终极指南 | Suno高级篇 | 第33篇
大数据·人工智能·深度学习·学习·suno·suno api
ESBK20251 小时前
第四届移动互联网、云计算与信息安全国际会议(MICCIS 2026)二轮征稿启动,诚邀全球学者共赴学术盛宴
大数据·网络·物联网·网络安全·云计算·密码学·信息与通信
Elastic 中国社区官方博客1 小时前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索
B站_计算机毕业设计之家1 小时前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
莽撞的大地瓜2 小时前
洞察,始于一目了然——让舆情数据自己“说话”
大数据·网络·数据分析