【Python 算法】动态规划

本博客笔记内容来源于灵神,视频链接如下:https://www.bilibili.com/video/BV16Y411v7Y6?vd_source=7414087e971fef9431117e44d8ba61a7\&spm_id_from=333.788.player.switch

01背包



计算了f[i+1],f[i]就没用了,相当于每时每刻只有两个数组在参与运算:

494题是求方案数的,要初始化成 0。
如果是恰好型背包并且要计算最大最小,那么初始值就和 inf 有关。

力扣494题:

对于至少/至多的变形问题,变形类似:

完全背包


力扣322题:

其中:从二维递推式来理解,

例如01背包,更新f【c】的值需要的是当前f【c】和上一个状态的f【c-w】,因为我们现在之后一个数组,若是正序,f【c-w】就更新过了,也就不是上一个状态的值了,所以必须逆序

若是完全背包,更新f【c】的值需要的是当前f【c】和当前状态的f【c-w】,需要的就是更新过的值,所以正序是没问题的。

例题:力扣2915. 和为目标值的最长子序列的长度

python 复制代码
class Solution:
    def lengthOfLongestSubsequence(self, nums: List[int], target: int) -> int:
        # 先使用递归
        # 恰好等于target ==背包容量
        # 长度即选物品,其价值为1
        # 只能选一次:01背包问题
        n = len(nums)

        # 1.递归:
        @cache
        def dfs(i,c):
            if i<0:
                return 0 if c==0 else -inf
            if c< nums[i]:
                return dfs(i-1,c)
            return max(dfs(i-1,c),dfs(i-1,c-nums[i])+1)
        
        ans= dfs(n-1,target)
        dfs.cache_clear()
        return ans if ans>-1 else -1

        # 2. 转为递推:
        dp[i+1][c]= max(dp[i][c],dp[i][c-nums[i]]+1) 整体加了1
        dp =[[-inf]*(target+1) for _ in range(n+1)]
        dp[0][0]=0
        for i,x in enumerate(nums):
            for c in range(target+1):
                if c<x:
                    dp[i+1][c]=dp[i][c]
                else:
                    dp[i+1][c]= max(dp[i][c],dp[i][c-x]+1)
        ans = dp[n][target]
        return ans if ans>-1 else -1

        # 3. 进一步优化为滚动数组
        dp =[[-inf]*(target+1) for _ in range(2)]
        dp[0][0]=0
        for i,x in enumerate(nums):
            for c in range(target+1):
                if c<x:
                    dp[(i+1)%2][c]=dp[i%2][c]
                else:
                    dp[(i+1)%2][c]= max(dp[i%2][c],dp[i%2][c-x]+1)

        ans = dp[n%2][target]  # 记得这里也要%2
        return ans if ans>-1 else -1

        #  4. 进一步优化为1维滚动数组

        dp =[-inf]*(target+1)
        dp[0]=0
        for x in nums:
            for c in range(target,x-1,-1):
                if c<x:
                    dp[c] = dp[c]
                else:
                    dp[c]= max(dp[c],dp[c-x]+1)

        ans = dp[target]  
        return ans if ans>-1 else -1

        
相关推荐
fwerfv3453456 小时前
C++中的装饰器模式变体
开发语言·c++·算法
Asmalin6 小时前
【代码随想录day 35】 力扣 416. 分割等和子集
算法·leetcode·职场和发展
Lululaurel9 小时前
深度模型瘦身术:从100MB到5MB的工业级压缩实战
pytorch·python·机器学习·模型压缩·模型优化·边缘部署
不枯石9 小时前
Matlab通过GUI实现点云的随机一致性(RANSAC)配准
开发语言·图像处理·算法·计算机视觉·matlab
WWZZ202510 小时前
ORB_SLAM2原理及代码解析:Tracking::CreateInitialMapMonocular() 函数
人工智能·opencv·算法·计算机视觉·机器人·slam·感知
WWZZ202510 小时前
ORB_SLAM2原理及代码解析:Tracking::MonocularInitialization() 函数
人工智能·opencv·算法·计算机视觉·机器人·感知·单目相机
那雨倾城10 小时前
PiscCode:基于OpenCV的前景物体检测
图像处理·python·opencv·计算机视觉
一粒马豆12 小时前
flask_socketio+pyautogui实现的具有加密传输功能的极简远程桌面
python·flask·pyautogui·远程桌面·flask_socketio
L_090712 小时前
【Algorithm】双指针算法与滑动窗口算法
c++·算法
小龙报12 小时前
《构建模块化思维---函数(下)》
c语言·开发语言·c++·算法·visualstudio·学习方法