离散数学问题集--问题4.40

Problem 4.40.

Let R : A → B R: A \to B R:A→B be a binary relation.

Lemma. If R R R is a function, and X ⊆ A X \subseteq A X⊆A, then
∣ X ∣ ≥ ∣ R ( X ) ∣ . |X| \geq |R(X)|. ∣X∣≥∣R(X)∣.

Use an arrow counting argument to prove the following generalization of the Mapping Rule 1.

证明:设 X ⊆ A X\subseteq A X⊆A,且 R : A → B R:A\to B R:A→B 是一个函数。

要证明 ∣ X ∣ ≥ ∣ R ( X ) ∣ |X|\geq |R(X)| ∣X∣≥∣R(X)∣,其中 R ( X ) = { b ∈ B ∣ ∃ a ∈ X . a R b } R(X)=\{b\in B|\exists a\in X. aRb\} R(X)={b∈B∣∃a∈X.aRb}。

考虑有序对集合 E = { ( a , b ) ∈ X × R ( X ) } E=\{(a,b)\in X\times R(X)\} E={(a,b)∈X×R(X)}。

方法一:通过对 X X X 中的元素求和来计数。

因为 R R R 是从 A A A 到 B B B 的函数,所以,对每个 a ∈ X a\in X a∈X,集合 B B B 中至多存在1个元素 b ∈ B b\in B b∈B,满足 a R b aRb aRb,即 ∣ R ( a ) ∣ ≤ 1 |R(a)|\leq 1 ∣R(a)∣≤1。

因为
E = ⋃ a ∈ X R ( a ) = ⋃ a ∈ X { b ∈ R ( x ) ∣ a R b } E=\bigcup_{a\in X}R(a)=\bigcup_{a\in X}\{b\in R(x)|aRb\} E=a∈X⋃R(a)=a∈X⋃{b∈R(x)∣aRb}

所以
∣ E ∣ = ∣ ⋃ a ∈ X R ( a ) ∣ ≤ ∑ a ∈ X 1 = ∣ X ∣ . \begin{align*} |E|&=|\bigcup_{a\in X} R(a)|\\ &\leq \sum_{a\in X} 1\\ &= |X|. \end{align*} ∣E∣=∣a∈X⋃R(a)∣≤a∈X∑1=∣X∣.

方法二:通过对 R ( X ) R(X) R(X) 中的元素求和来计数。

对每个 b ∈ R ( X ) b\in R(X) b∈R(X), ∣ R − 1 ( b ) ∣ = ∣ { a ∈ X ∣ a R b } ∣ |R^{-1}(b)|=|\{a\in X|aRb\}| ∣R−1(b)∣=∣{a∈X∣aRb}∣是 X X X 中与 b b b 通过 R R R 相关的元素个数。根据 R ( x ) R(x) R(x) 的定义,对每个 b ∈ R ( X ) b\in R(X) b∈R(X),至少存在1个 a ∈ X a\in X a∈X,满足 a R b aRb aRb。因此,对每个 b ∈ R ( X ) b\in R(X) b∈R(X), ∣ R − 1 ( b ) ∣ ≥ 1 |R^{-1}(b)|\geq 1 ∣R−1(b)∣≥1。

因为
E = ⋃ b ∈ R ( X ) R − 1 ( b ) = ⋃ b ∈ R ( X ) { a ∈ X ∣ a R b } , E=\bigcup_{b\in R(X)} R^{-1}(b)=\bigcup_{b\in R(X)}\{a\in X|aRb\}, E=b∈R(X)⋃R−1(b)=b∈R(X)⋃{a∈X∣aRb},

且不同的元素 b b b 对应的 R − 1 ( b ) R^{-1}(b) R−1(b) 是不相交的,这由 R R R 的函数性保证的。

所以
∣ E ∣ = ∣ ⋃ b ∈ R ( X ) R − 1 ( b ) ∣ = ∑ b ∈ R ( X ) ∣ R − 1 ( b ) ∣ ≥ ∑ b ∈ R ( x ) 1 = ∣ R ( X ) ∣ . \begin{align*} |E|&=|\bigcup_{b\in R(X)} R^{-1}(b)|\\ &=\sum_{b\in R(X)}|R^{-1}(b)|\\ &\geq \sum_{b\in R(x)}1 = |R(X)|. \end{align*} ∣E∣=∣b∈R(X)⋃R−1(b)∣=b∈R(X)∑∣R−1(b)∣≥b∈R(x)∑1=∣R(X)∣.

相关推荐
2303_Alpha2 天前
SpringBoot
笔记·学习
萘柰奈2 天前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity
沐矢羽2 天前
Tomcat PUT方法任意写文件漏洞学习
学习·tomcat
好奇龙猫2 天前
日语学习-日语知识点小记-进阶-JLPT-N1阶段蓝宝书,共120语法(10):91-100语法+考え方13
学习
向阳花开_miemie2 天前
Android音频学习(十八)——混音流程
学习·音视频
工大一只猿2 天前
51单片机学习
嵌入式硬件·学习·51单片机
c0d1ng2 天前
量子计算学习(第十四周周报)
学习·量子计算
Hello_Embed3 天前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件
咸甜适中3 天前
rust语言 (1.88) 学习笔记:客户端和服务器端同在一个项目中
笔记·学习·rust
Magnetic_h3 天前
【iOS】设计模式复习
笔记·学习·ios·设计模式·objective-c·cocoa