数据清洗

map阶段:按行读入内容,对内容进行检查,如果字段的个数少于等于11,就删除这条日志(不保留)去除日志中字段个数小于等于11的日志内容。

<偏移量,第一行的内容> → <通过刷选之后的第一行的内容,null>

reduce阶段:不需要进行汇总。

1.编写WebLogMapper类

java 复制代码
package com.root.mapreduce.weblog;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{	
	@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    // 1. 获取一行数据,使用空格进行拆分,判断是否有9个字段
    String[] fields = value.toString().split(" ");
    if (fields.length > 7) {
        // 这条数据是有意义的,保留
        System.out.println(fields[0]);
        context.write(value, NullWritable.get());
    } else {
        // 这条数据是无意义的,不保留
        return;
    }
}
}

代码说明:NullWritable就等价于null,context.write(value,NullWritable.get())就表示只有key,没有value。

2.编写WebLogDriver类

复制代码
package com.root.mapreduce.weblog;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {
	public static void main(String[] args) throws Exception {        
		// 1 获取job信息
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		// 2 加载jar包
		job.setJarByClass(LogDriver.class);

		// 3 关联map
		job.setMapperClass(WebLogMapper.class);

		// 4 设置最终输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);

		// 设置reducetask个数为0
		job.setNumReduceTasks(0);

		// 5 设置输入和输出路径
         FileInputFormat.setInputPaths(job, new Path("E:\\vm\\web.log"));
         FileOutputFormat.setOutputPath(job, new Path("E:\\vm\\ouput2"));

		// 6 提交
         boolean b = job.waitForCompletion(true);
         System.exit(b ? 0 : 1);
	}
}

代码说明:reduceTask为0,表示没有reduce阶段,程序会根据Map函数的结果把内容输出。最终输出的文件个数与mapperTask的数量一致。

相关推荐
while(努力):进步18 小时前
探索未来的技术变革:如何通过云计算与人工智能重塑数字化世界
zookeeper·spark
源码之家1 天前
机器学习:基于大数据二手房房价预测与分析系统 可视化 线性回归预测算法 Django框架 链家网站 二手房 计算机毕业设计✅
大数据·算法·机器学习·数据分析·spark·线性回归·推荐算法
Lansonli3 天前
大数据Spark(七十三):Transformation转换算子glom和foldByKey使用案例
大数据·分布式·spark
keep__go3 天前
spark 单机安装
大数据·运维·分布式·spark
蒙特卡洛的随机游走3 天前
Spark的persist和cache
大数据·分布式·spark
蒙特卡洛的随机游走3 天前
Spark 中 distribute by、sort by、cluster by 深度解析
大数据·分布式·spark
梦里不知身是客113 天前
Spark中的宽窄依赖-宽窄巷子
大数据·分布式·spark
闲人编程4 天前
Python与大数据:使用PySpark处理海量数据
大数据·开发语言·分布式·python·spark·codecapsule·大规模
青云交5 天前
Java 大视界 -- 基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战
flink·spark·工业互联网·预测性维护·实时数据处理·java 大数据·设备协同制造
周杰伦_Jay5 天前
【日志处理方案大比拼】 Filebeat+Kafka+Flink+Spark+ES+HDFS VS ELK/AOP/RocketMQ/大厂方案
flink·spark·kafka