数据清洗

map阶段:按行读入内容,对内容进行检查,如果字段的个数少于等于11,就删除这条日志(不保留)去除日志中字段个数小于等于11的日志内容。

<偏移量,第一行的内容> → <通过刷选之后的第一行的内容,null>

reduce阶段:不需要进行汇总。

1.编写WebLogMapper类

java 复制代码
package com.root.mapreduce.weblog;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{	
	@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    // 1. 获取一行数据,使用空格进行拆分,判断是否有9个字段
    String[] fields = value.toString().split(" ");
    if (fields.length > 7) {
        // 这条数据是有意义的,保留
        System.out.println(fields[0]);
        context.write(value, NullWritable.get());
    } else {
        // 这条数据是无意义的,不保留
        return;
    }
}
}

代码说明:NullWritable就等价于null,context.write(value,NullWritable.get())就表示只有key,没有value。

2.编写WebLogDriver类

复制代码
package com.root.mapreduce.weblog;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {
	public static void main(String[] args) throws Exception {        
		// 1 获取job信息
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		// 2 加载jar包
		job.setJarByClass(LogDriver.class);

		// 3 关联map
		job.setMapperClass(WebLogMapper.class);

		// 4 设置最终输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);

		// 设置reducetask个数为0
		job.setNumReduceTasks(0);

		// 5 设置输入和输出路径
         FileInputFormat.setInputPaths(job, new Path("E:\\vm\\web.log"));
         FileOutputFormat.setOutputPath(job, new Path("E:\\vm\\ouput2"));

		// 6 提交
         boolean b = job.waitForCompletion(true);
         System.exit(b ? 0 : 1);
	}
}

代码说明:reduceTask为0,表示没有reduce阶段,程序会根据Map函数的结果把内容输出。最终输出的文件个数与mapperTask的数量一致。

相关推荐
菜鸡儿齐3 小时前
spark组件-spark core(批处理)-rdd创建
大数据·分布式·spark
B站_计算机毕业设计之家13 小时前
python股票交易数据管理系统 金融数据 分析可视化 Django框架 爬虫技术 大数据技术 Hadoop spark(源码)✅
大数据·hadoop·python·金融·spark·股票·推荐算法
想ai抽18 小时前
Spark的shuffle类型与对比
大数据·数据仓库·spark
阿里云大数据AI技术2 天前
从“开源开放”走向“高效智能”:阿里云 EMR 年度重磅发布
spark
随心............2 天前
yarn面试题
大数据·hive·spark
ZHOU_WUYI2 天前
Apache Spark 集群部署与使用指南
大数据·spark·apache
随心............2 天前
在开发过程中遇到问题如何解决,以及两个经典问题
hive·hadoop·spark
Q26433650234 天前
【有源码】基于Python与Spark的火锅店数据可视化分析系统-基于机器学习的火锅店综合竞争力评估与可视化分析-基于用户画像聚类的火锅店市场细分与可视化研究
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
潘达斯奈基~4 天前
spark性能优化1:通过依赖关系重组优化Spark性能:宽窄依赖集中处理实践
大数据·性能优化·spark