人工智能通识速览(Part5. 大语言模型)

五、大语言模型

1.NLP

自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,专注于研究 计算机如何理解、生成和处理人类语言。它的目标是让机器能够像人类一样"读懂"文本或语音,并执 行翻译、问答、摘要等任务。

大模型不仅仅是模型规模庞大,也涵盖了训练数据规模庞大,以及由此衍生出的模型能力的强大。
截止 2024 年 6 月,国内外已经见证了超过百种大语言模型的诞生,这些大语言模型在学术界和工业界 均产生了深远的影响。

2.Scaling Laws(尺度定律)

描述了在模型规模(参数量)、数据量和计算量等资源增加时,模型性 能如何变化的规律。这些规律是由一系列实验发现并总结出来的,帮助研究者理解大型模型的行为,优 化资源配置,以及预测更大规模模型的表现。


在这一条件下,如果计算预算增加,为了达到最优模型性能,数据集的规模 D 以及模型规模 N 都
应同步增加。**模型规模的增长速度应该略快于数据规模的增长速度。**有争议,如OPENAI遵循上述规则,但是DeepMind却减小模型规模的增长,更加重视数据的增长。

3.涌现

涌现能力的概念源自于物理学中的定义,即当系统的量变导致行为的质变的现象。在大规模语言模
型中,涌现能力表现为在小模型中没有表现出来,但是在大模型中变现出来的能力。
上下文学习能力
常识推理能力
数学运算能力
代码生成能力
值得注意的是,这些新能力并非通过在特定下游任务上通过训练获得,而是随着模型复杂度的提升
凭空自然涌现。这些能力因此被称为大语言模型的涌现能力。

4.Token 与分词

在自然语言处理中,Token指文本处理的基本单位。Tokenization(分词) 指把文本内容处理为最小基本单 元,即token,用于后续的处理。按照划分粒度分为:单词(word)、子词(subword)或字符(character)。


5. Transformer

相关推荐
用户519149584845几秒前
检索增强生成(RAG)入门指南:构建知识库与LLM协同系统
人工智能·aigc
星期天要睡觉5 分钟前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
lxmyzzs7 分钟前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
什么都想学的阿超16 分钟前
【大语言模型 01】注意力机制数学推导:从零实现Self-Attention
人工智能·语言模型·自然语言处理
大千AI助手2 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
天上的光3 小时前
17.迁移学习
人工智能·机器学习·迁移学习
后台开发者Ethan3 小时前
Python需要了解的一些知识
开发语言·人工智能·python
猫头虎3 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农3 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络