深入理解矩阵乘积的导数:以线性回归损失函数为例


深入理解矩阵乘积的导数:以线性回归损失函数为例

在机器学习和数据分析领域,矩阵微积分扮演着至关重要的角色。特别是当我们涉及到优化问题,如最小化损失函数时,对矩阵表达式求导变得必不可少。本文将通过一个具体的例子------线性回归中的均方误差损失函数,来详细解释如何使用分配律(FOIL,First, Outer, Inner, Last)来展开矩阵乘积,并计算其导数。

线性回归与均方误差

线性回归是预测连续数值型响应变量的一种统计方法。在简单线性回归中,我们尝试找到一条直线,最好地拟合输入变量 (X) 和输出变量 (y) 之间的关系。模型可以表示为:

y = X w + b y = Xw + b y=Xw+b

其中,(X) 是设计矩阵,(w) 是权重向量,(b) 是偏置项。在多元线性回归中,模型扩展为:

y = X w + ϵ y = Xw + \epsilon y=Xw+ϵ

这里,(\epsilon) 表示误差项。

均方误差损失函数

为了训练模型,我们需要定义一个损失函数来衡量模型预测值与实际值之间的差异。均方误差(MSE)是常用的损失函数之一,定义为:

L ( w ) = ( y − X w ) T ( y − X w ) L(w) = (y - Xw)^T(y - Xw) L(w)=(y−Xw)T(y−Xw)

这个函数衡量了预测值 (Xw) 与真实值 (y) 之间的平方差。

展开损失函数

为了找到最小化损失函数的 (w) 值,我们需要对 (L(w)) 求导。首先,我们展开 (L(w)):

L ( w ) = ( y T − w T X T ) ( y − X w ) L(w) = (y^T - w^T X^T)(y - Xw) L(w)=(yT−wTXT)(y−Xw)

应用分配律(FOIL)展开这个乘积:

  1. First: (y^T y)
  2. Outer: (-y^T Xw)
  3. Inner: (-w^T X^T y)
  4. Last: (w^T X^T Xw)

将这些项组合起来,我们得到:

L ( w ) = y T y − y T X w − w T X T y + w T X T X w L(w) = y^T y - y^T Xw - w^T X^T y + w^T X^T Xw L(w)=yTy−yTXw−wTXTy+wTXTXw

求导数

接下来,我们对 (L(w)) 关于 (w) 求导。注意到 (y^T y) 是常数项,其导数为0。对于其他项,我们有:

  • (-y^T Xw) 的导数是 (-X^T y)。
  • (-w^T X^T y) 的导数是 (-X y)。
  • (w^T X^T Xw) 的导数需要使用矩阵微积分的链式法则,结果为 (2X^T Xw)。

因此,(L(w)) 的导数为:

∂ L ∂ w = − X T y − X y + 2 X T X w \frac{\partial L}{\partial w} = -X^T y - X y + 2X^T Xw ∂w∂L=−XTy−Xy+2XTXw

简化后得到:

∂ L ∂ w = 2 X T X w − X T y − X y \frac{\partial L}{\partial w} = 2X^T Xw - X^T y - X y ∂w∂L=2XTXw−XTy−Xy

结论

通过展开损失函数并计算其导数,我们得到了一个关键的梯度表达式,它将用于梯度下降算法中更新权重 (w)。这个过程展示了矩阵微积分在机器学习中的重要性,特别是在处理线性模型和优化问题时。理解如何正确地展开和求导矩阵表达式是进行有效模型训练的基础。


相关推荐
知乎的哥廷根数学学派8 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
数字化转型20259 小时前
企业数字化架构集成能力建设
大数据·程序人生·机器学习
知乎的哥廷根数学学派10 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
知乎的哥廷根数学学派11 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
Hcoco_me13 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
医工交叉实验工坊14 小时前
从零详解WGCNA分析
人工智能·机器学习
不如自挂东南吱17 小时前
空间相关性 和 怎么捕捉空间相关性
人工智能·深度学习·算法·机器学习·时序数据库
小鸡吃米…17 小时前
机器学习中的简单线性回归
人工智能·机器学习·线性回归
知乎的哥廷根数学学派18 小时前
基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
网络·人工智能·pytorch·python·深度学习·算法·机器学习
星云数灵18 小时前
大模型高级工程师考试练习题8
人工智能·机器学习·大模型·大模型考试题库·阿里云aca·阿里云acp大模型考试题库·大模型高级工程师acp