深入理解矩阵乘积的导数:以线性回归损失函数为例


深入理解矩阵乘积的导数:以线性回归损失函数为例

在机器学习和数据分析领域,矩阵微积分扮演着至关重要的角色。特别是当我们涉及到优化问题,如最小化损失函数时,对矩阵表达式求导变得必不可少。本文将通过一个具体的例子------线性回归中的均方误差损失函数,来详细解释如何使用分配律(FOIL,First, Outer, Inner, Last)来展开矩阵乘积,并计算其导数。

线性回归与均方误差

线性回归是预测连续数值型响应变量的一种统计方法。在简单线性回归中,我们尝试找到一条直线,最好地拟合输入变量 (X) 和输出变量 (y) 之间的关系。模型可以表示为:

y = X w + b y = Xw + b y=Xw+b

其中,(X) 是设计矩阵,(w) 是权重向量,(b) 是偏置项。在多元线性回归中,模型扩展为:

y = X w + ϵ y = Xw + \epsilon y=Xw+ϵ

这里,(\epsilon) 表示误差项。

均方误差损失函数

为了训练模型,我们需要定义一个损失函数来衡量模型预测值与实际值之间的差异。均方误差(MSE)是常用的损失函数之一,定义为:

L ( w ) = ( y − X w ) T ( y − X w ) L(w) = (y - Xw)^T(y - Xw) L(w)=(y−Xw)T(y−Xw)

这个函数衡量了预测值 (Xw) 与真实值 (y) 之间的平方差。

展开损失函数

为了找到最小化损失函数的 (w) 值,我们需要对 (L(w)) 求导。首先,我们展开 (L(w)):

L ( w ) = ( y T − w T X T ) ( y − X w ) L(w) = (y^T - w^T X^T)(y - Xw) L(w)=(yT−wTXT)(y−Xw)

应用分配律(FOIL)展开这个乘积:

  1. First: (y^T y)
  2. Outer: (-y^T Xw)
  3. Inner: (-w^T X^T y)
  4. Last: (w^T X^T Xw)

将这些项组合起来,我们得到:

L ( w ) = y T y − y T X w − w T X T y + w T X T X w L(w) = y^T y - y^T Xw - w^T X^T y + w^T X^T Xw L(w)=yTy−yTXw−wTXTy+wTXTXw

求导数

接下来,我们对 (L(w)) 关于 (w) 求导。注意到 (y^T y) 是常数项,其导数为0。对于其他项,我们有:

  • (-y^T Xw) 的导数是 (-X^T y)。
  • (-w^T X^T y) 的导数是 (-X y)。
  • (w^T X^T Xw) 的导数需要使用矩阵微积分的链式法则,结果为 (2X^T Xw)。

因此,(L(w)) 的导数为:

∂ L ∂ w = − X T y − X y + 2 X T X w \frac{\partial L}{\partial w} = -X^T y - X y + 2X^T Xw ∂w∂L=−XTy−Xy+2XTXw

简化后得到:

∂ L ∂ w = 2 X T X w − X T y − X y \frac{\partial L}{\partial w} = 2X^T Xw - X^T y - X y ∂w∂L=2XTXw−XTy−Xy

结论

通过展开损失函数并计算其导数,我们得到了一个关键的梯度表达式,它将用于梯度下降算法中更新权重 (w)。这个过程展示了矩阵微积分在机器学习中的重要性,特别是在处理线性模型和优化问题时。理解如何正确地展开和求导矩阵表达式是进行有效模型训练的基础。


相关推荐
亚马逊云开发者44 分钟前
利用大模型实现地理领域文档中英文自动化翻译
机器学习·llm
liruiqiang051 小时前
神经网络模型应用到机器学习时的难点
人工智能·深度学习·神经网络·机器学习
啦啦右一1 小时前
机器学习 | 神经网络介绍 | 概念向
人工智能·神经网络·机器学习
硅谷秋水2 小时前
人形机器人动作策略 ∼ 人类动作策略
人工智能·机器学习·计算机视觉·语言模型·机器人
问道飞鱼2 小时前
【机器学习】每日一讲-朴素贝叶斯公式
人工智能·机器学习·朴素贝叶斯公式
柯西梦回黄鹤楼3 小时前
《Not All Tokens Are What You Need for Pretraining》全文翻译
人工智能·深度学习·机器学习·语言模型·chatgpt
征途菜哥3 小时前
毛笔书体检测-hog+svm python opencv源码
算法·机器学习·支持向量机
学点技术儿3 小时前
requires_grad的三种写法以及区分
机器学习
是瑶瑶子啦3 小时前
【机器学习】笔记| 通俗易懂讲解:生成模型和判别模型|01
人工智能·笔记·机器学习