【深度学习与实战】3.1 逻辑回归模型

‌1. 定义与核心思想

逻辑回归(Logistic Regression)是一种用于‌二分类问题 ‌的统计学习方法,通过‌sigmoid函数‌将线性回归的输出映射到[0,1]区间,表示样本属于某一类别的概率‌。

  • 本质‌:广义线性模型,适用于因变量为二分类(如"是/否"、"成功/失败")的场景‌。

  • 核心公式‌:

其中为线性组合,为模型参数

  • :在特征XX条件下,样本属于类别1的概率。
  • sigmoid函数 ‌():将线性组合压缩到(0,1)之间,提供非线性概率转换。
  • :线性组合,由特征加权和加截距项组成。
  • ‌**​**‌:截距项(偏置),调整决策边界的偏移。
  • ‌:特征系数,反映每个特征对结果的影响方向和大小。
  • ‌**​**‌:输入特征变量。

2. Sigmoid函数的作用

  • 功能 ‌:将线性输出 转换为概率值,公式为:

  • 特性 ‌:
    • 输出范围(0,1),适合表示概率‌;
    • 时,,即分类阈值‌

3. 模型参数估计

  • 最大似然估计(MLE) ‌:通过最大化观测数据的联合概率求解参数‌。
    • 对数似然函数‌:

其中 .‌

  • 损失函数(交叉熵)‌:

通过梯度下降法最小化损失‌

4. 决策边界与系数解释

  • 决策边界 ‌:线性超平面 ,即
  • 系数意义 ‌:
    • 表示特征 每增加1单位,‌**胜率(Odds)**‌的倍数变化‌。
    • 例如, 时,,即 增加1单位,胜率提高至2.23倍‌

‌5**. 计算示例**‌

问题‌:预测学生是否通过考试,特征为学习时间(小时)和出勤率(比例),模型已训练,参数为:

步骤‌:

  1. 计算线性组合
  1. 计算线性组合zz‌:z=β0+β1X1+β2X2=−2+0.8×3+1.5×0.9=−2+2.4+1.35=1.75z=β0+β1X1+β2X2=−2+0.8×3+1.5×0.9=−2+2.4+1.35=1.75
  2. 应用sigmoid函数‌:

预测结果‌:概率为85.2%,超过阈值0.5,预测为‌通过考试‌。

相关推荐
小鸡吃米…9 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫9 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)9 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan9 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维9 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS10 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd10 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟10 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然11 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~11 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1