【深度学习与实战】3.1 逻辑回归模型

‌1. 定义与核心思想

逻辑回归(Logistic Regression)是一种用于‌二分类问题 ‌的统计学习方法,通过‌sigmoid函数‌将线性回归的输出映射到[0,1]区间,表示样本属于某一类别的概率‌。

  • 本质‌:广义线性模型,适用于因变量为二分类(如"是/否"、"成功/失败")的场景‌。

  • 核心公式‌:

其中为线性组合,为模型参数

  • :在特征XX条件下,样本属于类别1的概率。
  • sigmoid函数 ‌():将线性组合压缩到(0,1)之间,提供非线性概率转换。
  • :线性组合,由特征加权和加截距项组成。
  • ‌**​**‌:截距项(偏置),调整决策边界的偏移。
  • ‌:特征系数,反映每个特征对结果的影响方向和大小。
  • ‌**​**‌:输入特征变量。

2. Sigmoid函数的作用

  • 功能 ‌:将线性输出 转换为概率值,公式为:

  • 特性 ‌:
    • 输出范围(0,1),适合表示概率‌;
    • 时,,即分类阈值‌

3. 模型参数估计

  • 最大似然估计(MLE) ‌:通过最大化观测数据的联合概率求解参数‌。
    • 对数似然函数‌:

其中 .‌

  • 损失函数(交叉熵)‌:

通过梯度下降法最小化损失‌

4. 决策边界与系数解释

  • 决策边界 ‌:线性超平面 ,即
  • 系数意义 ‌:
    • 表示特征 每增加1单位,‌**胜率(Odds)**‌的倍数变化‌。
    • 例如, 时,,即 增加1单位,胜率提高至2.23倍‌

‌5**. 计算示例**‌

问题‌:预测学生是否通过考试,特征为学习时间(小时)和出勤率(比例),模型已训练,参数为:

步骤‌:

  1. 计算线性组合
  1. 计算线性组合zz‌:z=β0+β1X1+β2X2=−2+0.8×3+1.5×0.9=−2+2.4+1.35=1.75z=β0+β1X1+β2X2=−2+0.8×3+1.5×0.9=−2+2.4+1.35=1.75
  2. 应用sigmoid函数‌:

预测结果‌:概率为85.2%,超过阈值0.5,预测为‌通过考试‌。

相关推荐
m0_748248021 天前
C++20 协程:在 AI 推理引擎中的深度应用
java·c++·人工智能·c++20
leafff1231 天前
一文了解-大语言模型训练 vs 推理:硬件算力需求数据对比
人工智能·语言模型·自然语言处理
CareyWYR1 天前
每周AI论文速递(251103-251107)
人工智能
AI科技星1 天前
张祥前统一场论动量公式P=m(C-V)误解解答
开发语言·数据结构·人工智能·经验分享·python·线性代数·算法
cooldream20091 天前
构建智能知识库问答助手:LangChain与大语言模型的深度融合实践
人工智能·语言模型·langchain·rag
antonytyler1 天前
机器学习实践项目(二)- 房价预测增强篇 - 模型训练与评估:从多模型对比到小网格微调
人工智能·机器学习
数据库安全1 天前
世界互联网大会|美创科技无侵入数据安全多智体治理技术首发
大数据·人工智能·科技·数据安全
海底的星星fly1 天前
【Prompt学习技能树地图】生成知识提示技术的深度解析与应用
人工智能·学习·prompt
赵得C1 天前
智能体的范式革命:华为全栈技术链驱动下一代AI Agent
人工智能·华为·ai·ai编程
嵌入式-老费1 天前
自己动手写深度学习框架(感知机)
人工智能·深度学习