【深度学习与实战】3.1 逻辑回归模型

‌1. 定义与核心思想

逻辑回归(Logistic Regression)是一种用于‌二分类问题 ‌的统计学习方法,通过‌sigmoid函数‌将线性回归的输出映射到[0,1]区间,表示样本属于某一类别的概率‌。

  • 本质‌:广义线性模型,适用于因变量为二分类(如"是/否"、"成功/失败")的场景‌。

  • 核心公式‌:

其中为线性组合,为模型参数

  • :在特征XX条件下,样本属于类别1的概率。
  • sigmoid函数 ‌():将线性组合压缩到(0,1)之间,提供非线性概率转换。
  • :线性组合,由特征加权和加截距项组成。
  • ‌**​**‌:截距项(偏置),调整决策边界的偏移。
  • ‌:特征系数,反映每个特征对结果的影响方向和大小。
  • ‌**​**‌:输入特征变量。

2. Sigmoid函数的作用

  • 功能 ‌:将线性输出 转换为概率值,公式为:

  • 特性 ‌:
    • 输出范围(0,1),适合表示概率‌;
    • 时,,即分类阈值‌

3. 模型参数估计

  • 最大似然估计(MLE) ‌:通过最大化观测数据的联合概率求解参数‌。
    • 对数似然函数‌:

其中 .‌

  • 损失函数(交叉熵)‌:

通过梯度下降法最小化损失‌

4. 决策边界与系数解释

  • 决策边界 ‌:线性超平面 ,即
  • 系数意义 ‌:
    • 表示特征 每增加1单位,‌**胜率(Odds)**‌的倍数变化‌。
    • 例如, 时,,即 增加1单位,胜率提高至2.23倍‌

‌5**. 计算示例**‌

问题‌:预测学生是否通过考试,特征为学习时间(小时)和出勤率(比例),模型已训练,参数为:

步骤‌:

  1. 计算线性组合
  1. 计算线性组合zz‌:z=β0+β1X1+β2X2=−2+0.8×3+1.5×0.9=−2+2.4+1.35=1.75z=β0+β1X1+β2X2=−2+0.8×3+1.5×0.9=−2+2.4+1.35=1.75
  2. 应用sigmoid函数‌:

预测结果‌:概率为85.2%,超过阈值0.5,预测为‌通过考试‌。

相关推荐
YuTaoShao17 分钟前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算42 分钟前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装1 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801401 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
music&movie1 小时前
算法工程师认知水平要求总结
人工智能·算法
狂小虎2 小时前
亲测解决self.transform is not exist
python·深度学习
量子位2 小时前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek
黑鹿0222 小时前
机器学习基础(四) 决策树
人工智能·决策树·机器学习
Fxrain2 小时前
[深度学习]搭建开发平台及Tensor基础
人工智能·深度学习
szxinmai主板定制专家2 小时前
【飞腾AI加固服务器】全国产化飞腾+昇腾310+PCIe Switch的AI大模型服务器解决方案
运维·服务器·arm开发·人工智能·fpga开发