Correlation Matrix of Model Logits

1. Correlation Matrix of Model Logits 是说明什么的?

它反映的是:一个模型内部,不同类别之间的输出相关性结构

👇 举例:

你有一个模型(无论是 teacher 还是 student),在测试集中预测了很多图像(比如 N=1000 张),每张图输出 [logit_0, logit_1, logit_2, logit_3] 四个类别得分。

  • 你把所有图像的 logits 拿出来做相关性分析,计算的是:

    Corr[i][j] = PearsonCorr(logit_i, logit_j)

    也就是:

    在所有图像中,第 i 类和第 j 类的打分,是否同步升高、降低。


📌 这个矩阵说明了什么?

行为 说明
Corr[i][j] ≈ 1 模型认为 i 和 j 类经常一起出现(或难以区分)
Corr[i][j] ≈ -1 i 类高时,j 类低,说明它们是强对立关系
Corr[i][j] ≈ 0 没有明显相关性

🧠 举例(实际含义):

比如在皮肤病分类中:

  • 类别 0(黑头) 和 类别 1(粉刺)有高相关性,说明模型认为它们容易混淆;

  • 类别 0 和 类别 3(脓疱)无相关,说明它们形态差异大,模型容易分开。

✅ 2. Difference of Correlation Matrices (Student - Teacher) 是说明什么的?

它反映的是:学生模型与教师模型在类别结构建模上的差距

也就是,我们不是关心"你分类准不准",而是看:

"你有没有模仿到老师对不同类别之间的理解方式?"


📌 这个差值矩阵说明了什么?

你计算的是:

diff = corr_student - corr_teacher

  • 如果 diff[i][j] ≈ 0:说明 student 和 teacher 对 i类 和 j类 的语义关系 保持一致;

  • 如果 diff[i][j] ≈ 正/负值:说明 student 的理解方式和 teacher 不一致,可能产生歧义、结构偏移。


✅ 3. 对比意义是什么?为什么论文要用这个?

类型 用途 常用于分析
Correlation Matrix(单模型) 看一个模型对类别关系的感知是否合理、混淆 用于观察模型"语义结构"能力
Difference of Corr Matrix(两个模型) 对比模型结构迁移是否成功 知识蒸馏、结构对齐分析
相关推荐
我是一只puppy几秒前
使用AI进行代码审查
javascript·人工智能·git·安全·源代码管理
阿杰学AI1 分钟前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
esmap3 分钟前
ESMAP 智慧消防解决方案:以数字孪生技术构建全域感知消防体系,赋能消防安全管理智能化升级
人工智能·物联网·3d·编辑器·智慧城市
LaughingZhu8 分钟前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营
芷栀夏17 分钟前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
用户51914958484518 分钟前
CVE-2025-47812:Wing FTP Server 高危RCE漏洞分析与利用
人工智能·aigc
阿里云大数据AI技术23 分钟前
【AAAI2026】阿里云人工智能平台PAI视频编辑算法论文入选
人工智能
玄同76525 分钟前
我的 Trae Skill 实践|使用 UV 工具一键搭建 Python 项目开发环境
开发语言·人工智能·python·langchain·uv·trae·vibe coding
苍何1 小时前
腾讯重磅开源!混元图像 3.0 图生图真香!
人工智能
千里马也想飞1 小时前
人工智能在医疗领域的应用与研究论文写作实操:AI辅助快速完成框架+正文创作
人工智能