Correlation Matrix of Model Logits

1. Correlation Matrix of Model Logits 是说明什么的?

它反映的是:一个模型内部,不同类别之间的输出相关性结构

👇 举例:

你有一个模型(无论是 teacher 还是 student),在测试集中预测了很多图像(比如 N=1000 张),每张图输出 [logit_0, logit_1, logit_2, logit_3] 四个类别得分。

  • 你把所有图像的 logits 拿出来做相关性分析,计算的是:

    Corr[i][j] = PearsonCorr(logit_i, logit_j)

    也就是:

    在所有图像中,第 i 类和第 j 类的打分,是否同步升高、降低。


📌 这个矩阵说明了什么?

行为 说明
Corr[i][j] ≈ 1 模型认为 i 和 j 类经常一起出现(或难以区分)
Corr[i][j] ≈ -1 i 类高时,j 类低,说明它们是强对立关系
Corr[i][j] ≈ 0 没有明显相关性

🧠 举例(实际含义):

比如在皮肤病分类中:

  • 类别 0(黑头) 和 类别 1(粉刺)有高相关性,说明模型认为它们容易混淆;

  • 类别 0 和 类别 3(脓疱)无相关,说明它们形态差异大,模型容易分开。

✅ 2. Difference of Correlation Matrices (Student - Teacher) 是说明什么的?

它反映的是:学生模型与教师模型在类别结构建模上的差距

也就是,我们不是关心"你分类准不准",而是看:

"你有没有模仿到老师对不同类别之间的理解方式?"


📌 这个差值矩阵说明了什么?

你计算的是:

diff = corr_student - corr_teacher

  • 如果 diff[i][j] ≈ 0:说明 student 和 teacher 对 i类 和 j类 的语义关系 保持一致;

  • 如果 diff[i][j] ≈ 正/负值:说明 student 的理解方式和 teacher 不一致,可能产生歧义、结构偏移。


✅ 3. 对比意义是什么?为什么论文要用这个?

类型 用途 常用于分析
Correlation Matrix(单模型) 看一个模型对类别关系的感知是否合理、混淆 用于观察模型"语义结构"能力
Difference of Corr Matrix(两个模型) 对比模型结构迁移是否成功 知识蒸馏、结构对齐分析
相关推荐
华奥系科技42 分钟前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE42 分钟前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25111 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint1 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志1 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly2 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx992 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域2 小时前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售
猛犸MAMMOTH2 小时前
Python打卡第46天
开发语言·python·机器学习
HillVue3 小时前
AI,如何重构理解、匹配与决策?
人工智能·重构