Correlation Matrix of Model Logits

1. Correlation Matrix of Model Logits 是说明什么的?

它反映的是:一个模型内部,不同类别之间的输出相关性结构

👇 举例:

你有一个模型(无论是 teacher 还是 student),在测试集中预测了很多图像(比如 N=1000 张),每张图输出 [logit_0, logit_1, logit_2, logit_3] 四个类别得分。

  • 你把所有图像的 logits 拿出来做相关性分析,计算的是:

    Corr[i][j] = PearsonCorr(logit_i, logit_j)

    也就是:

    在所有图像中,第 i 类和第 j 类的打分,是否同步升高、降低。


📌 这个矩阵说明了什么?

行为 说明
Corr[i][j] ≈ 1 模型认为 i 和 j 类经常一起出现(或难以区分)
Corr[i][j] ≈ -1 i 类高时,j 类低,说明它们是强对立关系
Corr[i][j] ≈ 0 没有明显相关性

🧠 举例(实际含义):

比如在皮肤病分类中:

  • 类别 0(黑头) 和 类别 1(粉刺)有高相关性,说明模型认为它们容易混淆;

  • 类别 0 和 类别 3(脓疱)无相关,说明它们形态差异大,模型容易分开。

✅ 2. Difference of Correlation Matrices (Student - Teacher) 是说明什么的?

它反映的是:学生模型与教师模型在类别结构建模上的差距

也就是,我们不是关心"你分类准不准",而是看:

"你有没有模仿到老师对不同类别之间的理解方式?"


📌 这个差值矩阵说明了什么?

你计算的是:

diff = corr_student - corr_teacher

  • 如果 diff[i][j] ≈ 0:说明 student 和 teacher 对 i类 和 j类 的语义关系 保持一致;

  • 如果 diff[i][j] ≈ 正/负值:说明 student 的理解方式和 teacher 不一致,可能产生歧义、结构偏移。


✅ 3. 对比意义是什么?为什么论文要用这个?

类型 用途 常用于分析
Correlation Matrix(单模型) 看一个模型对类别关系的感知是否合理、混淆 用于观察模型"语义结构"能力
Difference of Corr Matrix(两个模型) 对比模型结构迁移是否成功 知识蒸馏、结构对齐分析
相关推荐
非著名架构师10 分钟前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
巫婆理发2221 小时前
评估指标+数据不匹配+贝叶斯最优误差(分析方差和偏差)+迁移学习+多任务学习+端到端深度学习
深度学习·学习·迁移学习
熙梦数字化1 小时前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车
刘海东刘海东1 小时前
逻辑方程结构图语言的机器实现(草稿)
人工智能
亮剑20181 小时前
第2节:程序逻辑与控制流——让程序“思考”
开发语言·c++·人工智能
hixiong1231 小时前
C# OpenCVSharp使用 读光-票证检测矫正模型
人工智能·opencv·c#
大千AI助手1 小时前
HotpotQA:推动多跳推理问答发展的标杆数据集
人工智能·神经网络·llm·qa·大千ai助手·hotpotqa·多跳推理能力
红尘炼丹客1 小时前
《DeepSeek-OCR: Contexts Optical Compression》速览
人工智能·python·自然语言处理·ocr
TiAmo zhang2 小时前
现代C++的AI革命:C++20/C++23核心特性解析与实战应用
c++·人工智能·c++20
mwq301232 小时前
从傅里叶变换到 RoPE:解构位置编码的数学灵魂
人工智能