【2025年认证杯数学中国数学建模网络挑战赛】C题 完整论文 全三问模型+求解+代码

目录

【2025年认证杯数学建模挑战赛】C题

数据预处理与全三问求解

一、问题重述

在化工业生产过程中,脱硫工艺是去除酸性气流中含硫污染物并回收单质硫的关键环节。该流程涉及多个反应釜、管道与储罐等设备,其运行状态由温度、压力、流量等多参数共同决定。实际生产中,由于外部随机干扰及参数间的复杂耦合关系,实时调控面临巨大挑战。如何通过数学模型对生产流程进行精准预测与控制,仅通过易测变量(如产物成分)反推系统整体状态,并调控少数易控参数(如原料输入速率),成为提升工艺效率与产物合格率的核心问题。

本题基于某化工厂脱硫工艺的时序数据,要求建立数学模型解决以下问题:首先,在不考虑反应延时的条件下,根据历史输入数据预测当前时刻的输出污染物浓度;其次,结合输入与输出数据,预测未来60个时间单位内是否会出现污染物超标(即不合格事件),需在保证预测正确率的前提下确定尽可能小的阈值;最后,在识别不合格事件的基础上,进一步精确预测其发生时间。通过上述问题的求解,旨在为工业场景中的实时调控提供可靠的理论支持,优化脱硫工艺的稳定性和经济性。

二、模型假设与符号说明

2.1 模型基本假设

本研究基于以下假设展开:

1)原始数据中不存在显著异常值,输入气体与输出污染物的时序波动反映真实工艺动态;

2)问题一建模时忽略反应过程的延时效应,仅通过历史输入数据的时序特征预测当前输出;

3)输入气体间的耦合关系可通过滑动窗口相关系数统计与动态置信区间估计量化;

4)工艺参数调整对多组气体协同波动的影响具有时域同步性,可作为系统状态迁移的标记点;

5)神经网络模型的训练误差收敛性能够有效反映其预测性能的稳定性。

2.2 符号说明

三、数据预处理及分析

四、问题一

五、问题二

5.1 基于互相关函数的反应延时识别

5.2 反应过程延时结果分析

5.3 基于BP神经网络的不合格产物预测

5.4 基于网格搜索的双气体参数优化

5.5 基于非线性回归的参数及预测准确性变化识别

六、问题三

代码(matlab)

完整论文和代码,冲刺国奖,请看下方~

相关推荐
go546315846512 小时前
中文语音识别与偏误检测系统开发
开发语言·人工智能·学习·生成对抗网络·数学建模·语音识别
shenghaide_jiahu14 小时前
数学建模——线性规划类题目(运筹优化类)
线性代数·数学建模
pk_xz1234561 天前
光电二极管探测器电流信号处理与指令输出系统
人工智能·深度学习·数学建模·数据挖掘·信号处理·超分辨率重建
Better Rose1 天前
2025年“创新杯”(原钉钉杯) A题 建模思路
人工智能·数学建模·钉钉
RS_数模加油站2 天前
2025创新杯(钉钉杯)数学建模 AB赛题已出
数学建模·钉钉杯·创新杯
行然梦实3 天前
论文阅读:《针对多目标优化和应用的 NSGA-II 综述》一些关于优化算法的简介
论文阅读·算法·数学建模
行然梦实3 天前
论文阅读:《无约束多目标优化的遗传算法,群体和进化计算》
论文阅读·算法·数学建模
您好啊数模君4 天前
30天打牢数模基础-决策树讲解
决策树·数学建模·2025数学建模国赛
仟濹5 天前
【数学建模|Matlab】Matlab「基础知识」和「基础操作」
数学建模·matlab
pk_xz1234565 天前
厌氧菌数据挖掘可行性评估报告
人工智能·深度学习·神经网络·数学建模·数据挖掘·超分辨率重建