[特殊字符] 第十二讲 | 地统计学基础与克里金插值法(Kriging)建模实践

📘 专栏:科研统计方法实战分享 | 地学/农学人的数据分析工具箱

✍️ 作者:平常心0715

🗝️ 本讲关键词:Kriging、地统计学、变异函数、空间插值、空间预测、R语言


一、什么是地统计学?

地统计学(Geostatistics )是一门研究空间变量分布规律空间插值预测的科学方法,广泛应用于:

  • 土壤养分空间分布图;

  • 地下水位预测;

  • 重金属污染扩散模拟;

  • 农业精细管理。

它的核心思想是:"相近位置的属性值更相似"(空间自相关性)。


二、Kriging插值法简介

Kriging(克里金插值)是地统计学中最经典的空间插值方法,相较于 IDW(反距离权重法)更具统计学基础。

Kriging 的关键流程:

  1. 计算经验变异函数(Empirical Variogram)

  2. 拟合理论变异函数模型(Spherical、Exponential 等)

  3. 进行空间插值预测

  4. 评估插值精度


三、实战案例:基于 R 构建 Kriging 插值图

✅ 所需 R 包
复制代码
library(sf)
library(gstat)
library(sp)
library(ggplot2)
library(automap) # 自动拟合变异函数
🧪 模拟数据:土壤有机质空间分布
复制代码
# 模拟100个样点
set.seed(42)
n <- 100
x <- runif(n, 0, 100)
y <- runif(n, 0, 100)
z <- 5 + 0.05 * x + 0.1 * y + rnorm(n, 0, 1)  # 模拟值
dat <- data.frame(x = x, y = y, SOM = z)
coordinates(dat) <- ~x + y

四、经验变异函数与理论模型拟合

复制代码
# 计算经验变异函数
vgm_exp <- variogram(SOM ~ 1, data = dat)

# 拟合变异函数模型
vgm_model <- fit.variogram(vgm_exp, model = vgm("Sph"))
plot(vgm_exp, vgm_model)

模型参数解释:

  • Nugget:微小尺度误差(随机性)

  • Sill:总体方差

  • Range:空间影响距离(超过该距离,自变量不相关)


五、构建Kriging插值预测

复制代码
# 构建插值网格
grd <- expand.grid(x = seq(0, 100, by = 2),
                   y = seq(0, 100, by = 2))
coordinates(grd) <- ~x + y
gridded(grd) <- TRUE

# 进行普通Kriging插值
krig_result <- krige(SOM ~ 1, dat, grd, model = vgm_model)

# 可视化结果
krig_df <- as.data.frame(krig_result)
ggplot(krig_df, aes(x = x, y = y, fill = var1.pred)) +
  geom_tile() +
  scale_fill_viridis_c(name = "SOM") +
  theme_minimal() +
  labs(title = "Kriging插值预测图", x = "X", y = "Y")

六、自动建模推荐(使用 automap

复制代码
library(automap)
kriging_auto <- autoKrige(SOM ~ 1, dat, grd)
spplot(kriging_auto$krige_output["var1.pred"])

七、科研写作模板 ✍️

📘 中文:

"采用普通Kriging方法对100个样点进行土壤有机质空间插值,结果显示其分布具有明显的空间结构性,理论变异函数模型为球状模型,空间影响距离约为35米。"

📘 英文:

"Ordinary Kriging interpolation was conducted based on 100 soil sampling points. The fitted spherical variogram model suggested a spatial dependency range of approximately 35 meters."


八、小结 🧠

  • Kriging是兼顾局部拟合与空间结构的插值方法;

  • 变异函数拟合是插值精度的关键;

  • 地统计学是空间预测分析的核心能力;

  • R语言中的 gstat / automap 让建模流程更加自动化。


九、推荐资源 📚

工具 功能说明
gstat 空间插值与变异函数计算
automap Kriging自动化建模
sf, sp 空间对象构建
ggplot2 插值结果可视化

📌 下一讲预告:《地统计模拟与空间不确定性评估》

🧩 如果你喜欢这篇文章,欢迎点赞、收藏、评论,让更多科研人受益!

相关推荐
胖子君1 分钟前
BI工具革命派vs传统强者:DataFocus.ai与Tableau的终极对决
数据分析
databook2 小时前
『Plotly实战指南』--雷达图绘制与应用
python·数据分析·数据可视化
派可数据BI可视化12 小时前
数据中台、BI业务访谈(二):组织架构梳理的坑
数据仓库·人工智能·信息可视化·数据分析·商业智能bi
晨曦54321012 小时前
绘图与数据可视化
信息可视化·数据挖掘·数据分析
蹦蹦跳跳真可爱58912 小时前
Python----机器学习(基于贝叶斯的鸢尾花分类)
python·机器学习·分类
岁月如歌,青春不败14 小时前
CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
人工智能·数据挖掘·数据分析·大气科学·气象学·cmip6·地球科学
拓端研究室TRL15 小时前
Python与R语言用XGBOOST、NLTK、LASSO、决策树、聚类分析电商平台评论信息数据集
开发语言·python·算法·决策树·r语言
大雄野比16 小时前
【scikit-learn基础】--『预处理』之 分类编码
人工智能·分类·scikit-learn
qq_2147826117 小时前
Python Orange:托拉拽玩转机器学习、数据挖掘!
开发语言·python·数据分析
Chh071519 小时前
[特殊字符] 第十四讲 | 空间异质性检验与地统计局部指标(LISA)应用
arcgis·数据分析·r语言