机器学习 第一章

🧠 机器学习 第一章

一、什么是机器学习 (Machine Learning)

让计算机自己从数据中学习出规律,无需人手写规则

  • 输入: 特征 x
  • 输出: 标签 y
  • 学习目标: 学习出 f(x) 等价于 y

二、三大类型任务

类型 英文 特点 示例
回归 Regression 输出是连续值 房价预测
分类 Classification 输出是类别标签 图像识别
结构化学习 Structured Prediction 输出是结构 机器翻译、NER

三、模型核心公式

y = w x + b y = wx + b y=wx+b

符号 意义
x 输入特征
w 权重
b 偏置
y 预测值

四、Loss (损失函数)

用来衡量预测和真实值有多大差距

🔹 常用衡量:MSE (均方误)

L o s s = 1 n ∑ ( y i − y ^ i ) 2 Loss = \frac{1}{n} \sum (y_i - \hat{y}_i)^2 Loss=n1∑(yi−y^i)2

  • 输出越出误越小,Loss 越小

五、模型训练:梯度下降

🔹 目标:寻找 w、b 使 loss 最小

w = w − η ⋅ ∂ L ∂ w b = b − η ⋅ ∂ L ∂ b w = w - \eta \cdot \frac{\partial L}{\partial w} \ b = b - \eta \cdot \frac{\partial L}{\partial b} w=w−η⋅∂w∂L b=b−η⋅∂b∂L

  • 通过每次计算方向(导数)进行更新
  • 就是一步步往 Loss 地形最低点跑

六、向量化计算:NumPy 操作

  • x 是数组,包含所有样本
  • w * x + b 是一群预测值
  • y_pred - y:一群误差
  • np.mean() 就是对误差平方求均

七、神经网络公式构建

y = b + ∑ i c i ⋅ s i g m o i d ( b i + ∑ j w i j x j ) y = b + \sum_i c_i \cdot sigmoid(b_i + \sum_j w_{ij}x_j) y=b+i∑ci⋅sigmoid(bi+j∑wijxj)

  • 输入 x_j 经 w 和 b_i 进入 hidden layer
  • hidden 经 sigmoid 转换
  • hidden 和 c_i 相乘合并进入输出 y

八、激活函数 Activation Function

🔹 给神经元带来非线性能力,让网络可以拟合复杂函数

名称 特性 应用
Sigmoid S型,输出 0~1 合适二分类、概率输出
ReLU 负值滤掉,保留正值 现代深度网络主流
相关推荐
mit6.8242 分钟前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945196 分钟前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火1 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴2 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR3 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢3 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-1433 小时前
51c自动驾驶~合集14
人工智能
C++、Java和Python的菜鸟3 小时前
第六章 统计初步
算法·机器学习·概率论
Jinkxs4 小时前
自动化测试的下一站:AI缺陷检测工具如何实现“bug提前预警”?
人工智能·自动化
小幽余生不加糖4 小时前
电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
人工智能·笔记·学习·音视频