机器学习 第一章

🧠 机器学习 第一章

一、什么是机器学习 (Machine Learning)

让计算机自己从数据中学习出规律,无需人手写规则

  • 输入: 特征 x
  • 输出: 标签 y
  • 学习目标: 学习出 f(x) 等价于 y

二、三大类型任务

类型 英文 特点 示例
回归 Regression 输出是连续值 房价预测
分类 Classification 输出是类别标签 图像识别
结构化学习 Structured Prediction 输出是结构 机器翻译、NER

三、模型核心公式

y = w x + b y = wx + b y=wx+b

符号 意义
x 输入特征
w 权重
b 偏置
y 预测值

四、Loss (损失函数)

用来衡量预测和真实值有多大差距

🔹 常用衡量:MSE (均方误)

L o s s = 1 n ∑ ( y i − y ^ i ) 2 Loss = \frac{1}{n} \sum (y_i - \hat{y}_i)^2 Loss=n1∑(yi−y^i)2

  • 输出越出误越小,Loss 越小

五、模型训练:梯度下降

🔹 目标:寻找 w、b 使 loss 最小

w = w − η ⋅ ∂ L ∂ w b = b − η ⋅ ∂ L ∂ b w = w - \eta \cdot \frac{\partial L}{\partial w} \ b = b - \eta \cdot \frac{\partial L}{\partial b} w=w−η⋅∂w∂L b=b−η⋅∂b∂L

  • 通过每次计算方向(导数)进行更新
  • 就是一步步往 Loss 地形最低点跑

六、向量化计算:NumPy 操作

  • x 是数组,包含所有样本
  • w * x + b 是一群预测值
  • y_pred - y:一群误差
  • np.mean() 就是对误差平方求均

七、神经网络公式构建

y = b + ∑ i c i ⋅ s i g m o i d ( b i + ∑ j w i j x j ) y = b + \sum_i c_i \cdot sigmoid(b_i + \sum_j w_{ij}x_j) y=b+i∑ci⋅sigmoid(bi+j∑wijxj)

  • 输入 x_j 经 w 和 b_i 进入 hidden layer
  • hidden 经 sigmoid 转换
  • hidden 和 c_i 相乘合并进入输出 y

八、激活函数 Activation Function

🔹 给神经元带来非线性能力,让网络可以拟合复杂函数

名称 特性 应用
Sigmoid S型,输出 0~1 合适二分类、概率输出
ReLU 负值滤掉,保留正值 现代深度网络主流
相关推荐
三花AI38 分钟前
ComfyUI 子工作流功能:一次编辑全局更新
人工智能
大模型铲屎官39 分钟前
【深度学习-Day 23】框架实战:模型训练与评估核心环节详解 (MNIST实战)
人工智能·pytorch·python·深度学习·大模型·llm·mnist
Elastic 中国社区官方博客42 分钟前
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
大数据·人工智能·elasticsearch·搜索引擎·云计算·全文检索·aws
Jamence1 小时前
多模态大语言模型arxiv论文略读(106)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
caig0001 小时前
稳定币的深度剖析与展望
人工智能·区块链
反向跟单策略1 小时前
期货反向跟单运营逻辑推导思路
大数据·人工智能·数据分析·区块链
机器之心1 小时前
MoE推理「王炸」组合:昇腾×盘古让推理性能狂飙6-8倍
人工智能
艾醒(AiXing-w)2 小时前
探索大语言模型(LLM):RSE流程详解——从文档中精准识别高相关片段
数据库·人工智能·语言模型
陈奕昆2 小时前
4.2 HarmonyOS NEXT分布式AI应用实践:联邦学习、跨设备协作与个性化推荐实战
人工智能·分布式·harmonyos
AI.NET 极客圈2 小时前
.NET 原生驾驭 AI 新基建实战系列(六):Pinecone ── 托管向量数据库的向量数据库的云原生先锋
数据库·人工智能·.net