目录

机器学习 第一章

🧠 机器学习 第一章

一、什么是机器学习 (Machine Learning)

让计算机自己从数据中学习出规律,无需人手写规则

  • 输入: 特征 x
  • 输出: 标签 y
  • 学习目标: 学习出 f(x) 等价于 y

二、三大类型任务

类型 英文 特点 示例
回归 Regression 输出是连续值 房价预测
分类 Classification 输出是类别标签 图像识别
结构化学习 Structured Prediction 输出是结构 机器翻译、NER

三、模型核心公式

y = w x + b y = wx + b y=wx+b

符号 意义
x 输入特征
w 权重
b 偏置
y 预测值

四、Loss (损失函数)

用来衡量预测和真实值有多大差距

🔹 常用衡量:MSE (均方误)

L o s s = 1 n ∑ ( y i − y ^ i ) 2 Loss = \frac{1}{n} \sum (y_i - \hat{y}_i)^2 Loss=n1∑(yi−y^i)2

  • 输出越出误越小,Loss 越小

五、模型训练:梯度下降

🔹 目标:寻找 w、b 使 loss 最小

w = w − η ⋅ ∂ L ∂ w b = b − η ⋅ ∂ L ∂ b w = w - \eta \cdot \frac{\partial L}{\partial w} \ b = b - \eta \cdot \frac{\partial L}{\partial b} w=w−η⋅∂w∂L b=b−η⋅∂b∂L

  • 通过每次计算方向(导数)进行更新
  • 就是一步步往 Loss 地形最低点跑

六、向量化计算:NumPy 操作

  • x 是数组,包含所有样本
  • w * x + b 是一群预测值
  • y_pred - y:一群误差
  • np.mean() 就是对误差平方求均

七、神经网络公式构建

y = b + ∑ i c i ⋅ s i g m o i d ( b i + ∑ j w i j x j ) y = b + \sum_i c_i \cdot sigmoid(b_i + \sum_j w_{ij}x_j) y=b+i∑ci⋅sigmoid(bi+j∑wijxj)

  • 输入 x_j 经 w 和 b_i 进入 hidden layer
  • hidden 经 sigmoid 转换
  • hidden 和 c_i 相乘合并进入输出 y

八、激活函数 Activation Function

🔹 给神经元带来非线性能力,让网络可以拟合复杂函数

名称 特性 应用
Sigmoid S型,输出 0~1 合适二分类、概率输出
ReLU 负值滤掉,保留正值 现代深度网络主流
本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
东锋1.32 分钟前
Spring AI 发布了它的 1.0.0 版本的第七个里程碑(M7)
java·人工智能·spring
邪恶的贝利亚15 分钟前
神经网络复习
人工智能·神经网络·机器学习
新智元15 分钟前
支付宝被 AI 调用,一句话运营小红书!国内最大 MCP 社区来了,开发者狂欢
人工智能·openai
岁月如歌,青春不败17 分钟前
AI智能体开发与大语言模型的本地化部署、优化技术
人工智能·深度学习·机器学习·大语言模型·智能体
学渣6765618 分钟前
【激活函数:神经网络的“调味料】
人工智能·深度学习·神经网络
陈明勇34 分钟前
MCP 协议更新详解:从 HTTP+SSE 到 Streamable HTTP
人工智能·ai编程·mcp
视觉语言导航44 分钟前
IJCV-2025 | 深圳大学记忆增强的具身导航!ESceme:基于情景记忆的视觉语言导航
人工智能·深度学习·具身智能
Better Rose1 小时前
【2025年泰迪杯数据挖掘挑战赛】B题 详细解题思路+数据预处理+代码分享
人工智能·数据挖掘
Newfocus!1 小时前
GpuGeek:重构AI算力基础设施,赋能产业智能升级
人工智能·emacs