机器学习 第一章

🧠 机器学习 第一章

一、什么是机器学习 (Machine Learning)

让计算机自己从数据中学习出规律,无需人手写规则

  • 输入: 特征 x
  • 输出: 标签 y
  • 学习目标: 学习出 f(x) 等价于 y

二、三大类型任务

类型 英文 特点 示例
回归 Regression 输出是连续值 房价预测
分类 Classification 输出是类别标签 图像识别
结构化学习 Structured Prediction 输出是结构 机器翻译、NER

三、模型核心公式

y = w x + b y = wx + b y=wx+b

符号 意义
x 输入特征
w 权重
b 偏置
y 预测值

四、Loss (损失函数)

用来衡量预测和真实值有多大差距

🔹 常用衡量:MSE (均方误)

L o s s = 1 n ∑ ( y i − y ^ i ) 2 Loss = \frac{1}{n} \sum (y_i - \hat{y}_i)^2 Loss=n1∑(yi−y^i)2

  • 输出越出误越小,Loss 越小

五、模型训练:梯度下降

🔹 目标:寻找 w、b 使 loss 最小

w = w − η ⋅ ∂ L ∂ w b = b − η ⋅ ∂ L ∂ b w = w - \eta \cdot \frac{\partial L}{\partial w} \ b = b - \eta \cdot \frac{\partial L}{\partial b} w=w−η⋅∂w∂L b=b−η⋅∂b∂L

  • 通过每次计算方向(导数)进行更新
  • 就是一步步往 Loss 地形最低点跑

六、向量化计算:NumPy 操作

  • x 是数组,包含所有样本
  • w * x + b 是一群预测值
  • y_pred - y:一群误差
  • np.mean() 就是对误差平方求均

七、神经网络公式构建

y = b + ∑ i c i ⋅ s i g m o i d ( b i + ∑ j w i j x j ) y = b + \sum_i c_i \cdot sigmoid(b_i + \sum_j w_{ij}x_j) y=b+i∑ci⋅sigmoid(bi+j∑wijxj)

  • 输入 x_j 经 w 和 b_i 进入 hidden layer
  • hidden 经 sigmoid 转换
  • hidden 和 c_i 相乘合并进入输出 y

八、激活函数 Activation Function

🔹 给神经元带来非线性能力,让网络可以拟合复杂函数

名称 特性 应用
Sigmoid S型,输出 0~1 合适二分类、概率输出
ReLU 负值滤掉,保留正值 现代深度网络主流
相关推荐
buttonupAI11 分钟前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_9048764832 分钟前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
曹文杰151903011244 分钟前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
竣雄1 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把1 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL1 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很1 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里2 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631292 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛112 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai