【论文阅读】UniAD: Planning-oriented Autonomous Driving

一、Introduction

传统的无人驾驶采用了区分子模块的设计,即将无人驾驶拆分为感知规划控制三个模块,这虽然能够让无人驾驶以一个很清晰的结构实现,但是感知的结果在传达到规划部分的时候,会导致部分信息丢失,这势必会让很多关键信息无法传递到规划部分,限制整体的算法运行。端到端的无人驾驶则是将感知、预测和规划整合为一个整体,并以规划为任务的核心。在这篇出名的无人驾驶论文中,作者将无人驾驶分为了五个关键的子任务,作者讨论了对于一个端到端的无人驾驶任务来说,究竟哪个模块是必须保留的,而哪些模块是可有可无的。

二、Methodology

Overview

UniAD采用的是基于Transformer的结构,整个框架基于Transformer设计了四个子模块以及一个预测模块。输入的环视图像首先使用BEVFormer转换为BEV特征,后续的所有任务都基于这个BEV视角。作者特地提到,这里并不对使用的BEV模块做限制,任何一个能够完成BEV特征提取的模型都可以用在这里,作者在UniAD中使用的框架叫BEVFormer,也是一个基于Transformer的模型。转换为BEV特征后,首先使用两个特征提取的模块TrackFormer和MapFormer分别提取场景中的agent信息和地图信息,之后使用这两个信息在MotionFormer里面进行预测,得到未来的轨迹信息,这些轨迹信息在OccFormer里面转换为未来时刻场景中占用的预测,最后在Planner的部分完成轨迹的生成和优化。

Perception: Tracking and Mapping

TrackFormer
MapFormer

Prediction: Motion Forecasting

MotionFormer
MotionQueries
Non-linear Optimization

Prediction: Occupancy Prediction

Planning

相关推荐
selia10782 小时前
[论文阅读] Neural Architecture Search: Insights from 1000 Papers
论文阅读
寻丶幽风4 小时前
论文阅读笔记——NoPoSplat
论文阅读·笔记·三维重建·3dgs·相机位姿·dustr
寻丶幽风10 小时前
论文阅读笔记——VGGT: Visual Geometry Grounded Transformer
论文阅读·笔记·transformer·三维重建·3dgs·vggt
张较瘦_11 小时前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
非英杰不图13 小时前
论文阅读:Align and Prompt (ALPRO 2021.12)
论文阅读·prompt
qq_4162764213 小时前
当SAM遇到声纳图像时之论文阅读
论文阅读
王上上14 小时前
【论文阅读38】-结合应力预测位移
论文阅读
张较瘦_11 天前
[论文阅读] 软件工程 + 教学 | 软件工程项目管理课程改革:从传统教学到以学生为中心的混合式学习实践
论文阅读·学习·软件工程
ZHANG8023ZHEN11 天前
GameFormer论文阅读
论文阅读
青椒大仙KI1111 天前
论文笔记 <交通灯><多智能体>MetaLight:基于价值的元强化学习用于交通信号控制
论文阅读