介绍TxGemma:提升药物研发效率的AI模型

什么是TxGemma?

TxGemma是一组由Google DeepMind开发的开源AI模型,旨在通过利用大型语言模型(LLMs)来提高药物研发的效率。药物研发是一个高风险、耗时且昂贵的过程,90%的药物候选物在第一阶段试验后失败。TxGemma基于Gemma-2模型,专门训练用于理解和预测治疗实体的性质,从识别潜在靶点到预测临床试验结果。

TxGemma的主要特点

  • 模型大小:TxGemma提供3种模型大小:2B、9B和27B参数,每种都有"预测"版本,适用于特定任务,如预测分子毒性。
  • 任务类型:支持分类(例如,分子是否能穿过血脑屏障)、回归(例如,预测药物的结合亲和力)和生成(例如,给定反应产物生成反应物)。
  • 性能:27B模型在66个治疗开发任务中表现优于或与现有最佳模型相似,超越了许多专用模型。

TxGemma如何提升药物研发?

加速药物发现

TxGemma通过预测药物性质、识别潜在靶点和优化临床试验设计来加速药物发现过程。

增强可解释性和互动性

TxGemma-Chat版本可以解释其预测的理由,回答复杂问题,并进行多轮讨论。例如,研究人员可以询问为什么某个分子被预测为有毒,并获得基于分子结构的解释。

如何使用TxGemma?

获取和使用模型

TxGemma模型可在Vertex AI Model Garden和Hugging Face上获取。开发者可以使用这些模型进行推理、微调,并将其集成到自己的研究工作流中。

示例代码

以下是如何使用TxGemma进行预测的示例代码:

ini 复制代码
python
import json
from huggingface_hub import hf_hub_download

# 加载任务模板
tdc_prompts_filepath = hf_hub_download(
    repo_id="google/txgemma-27b-predict",
    filename="tdc_prompts.json"
)

with open(tdc_prompts_filepath, "r") as f:
    tdc_prompts_json = json.load(f)

# 设置任务和输入
task_name = "BBB_Martins"
input_type = "{Drug SMILES}"
drug_smiles = "CN1C(=O)CN=C(C2=CCCCC2)c2cc(Cl)ccc21"

# 构造提示
TDC_PROMPT = tdc_prompts_json[task_name].replace(input_type, drug_smiles)

print(TDC_PROMPT)

微调TxGemma

开发者可以使用自己的数据对TxGemma进行微调,以适应特定的研究需求。例如,使用TrialBench数据集来预测临床试验不良事件。

TxGemma在复杂研究中的应用

TxGemma可以集成到Agentic-Tx系统中,用于解决需要多步骤推理的复杂问题。Agentic-Tx配备了18种工具,包括TxGemma、PubMed、Wikipedia和特定分子工具等。它在包括Humanity's Last Exam和ChemBench在内的多个基准测试中取得了最先进的结果。

相关推荐
爱数模的小驴7 分钟前
2025 年“认证杯”数学中国数学建模网络挑战赛 C题 化工厂生产流程的预测和控制
深度学习·算法·计算机视觉
软件测试曦曦1 小时前
16:00开始面试,16:08就出来了,问的问题有点变态。。。
自动化测试·软件测试·功能测试·程序人生·面试·职场和发展
拉不动的猪2 小时前
设计模式之------策略模式
前端·javascript·面试
序属秋秋秋2 小时前
算法基础_数据结构【单链表 + 双链表 + 栈 + 队列 + 单调栈 + 单调队列】
c语言·数据结构·c++·算法
独行soc2 小时前
2025年常见渗透测试面试题-红队面试宝典下(题目+回答)
linux·运维·服务器·前端·面试·职场和发展·csrf
uhakadotcom2 小时前
Google Earth Engine 机器学习入门:基础知识与实用示例详解
前端·javascript·面试
apcipot_rain3 小时前
【密码学——基础理论与应用】李子臣编著 第五章 序列密码 课后习题
算法·密码学
不要不开心了3 小时前
sparkcore编程算子
pytorch·分布式·算法·pygame
88号技师3 小时前
【2024年最新IEEE Trans】模糊斜率熵Fuzzy Slope entropy及5种多尺度,应用于状态识别、故障诊断!
人工智能·算法·matlab·时序分析·故障诊断·信息熵·特征提取
uhakadotcom3 小时前
Amazon GameLift 入门指南:六大核心组件详解与实用示例
后端·面试·github