学习海康VisionMaster之四边形查找

一:进一步学习了

今天学习下VisionMaster中的四边形查找,这个还是拟合直线的衍生应用,可以同时测量四条直线并且输出交点或者判定是否有交点

二:开始学习

1:什么是四边形查找?

按照传统的算法,必须是开四个窗口,每一个窗口检测一条边,然后计算四条边的交点,为后续的应用场景输出交点坐标,这样就比较麻烦,现在一个窗口直接搞定,简单直接快速

2:应用场景:这个应用场景其实在机器视觉的场景下应用还是非常广泛的

  1. 包装盒检测

    • 纸箱、包装盒的完整性检查

    • 包装盒定位和位置校正

    • 包装盒尺寸测量

  2. 印刷电路板(PCB)检测

    • PCB板定位

    • 焊盘区域检测

    • 元件位置验证

  3. 液晶面板检测

    • 屏幕边缘检测

    • 面板定位

    • 缺陷区域标记

三:直接上案例

1:先导入需要测试的图片集合

2:使用轮廓定位,把两个组件的线连起来,这里是需要设定模版匹配功能,这样图像不管怎么旋转都能准确定位图像位置,具体操作步骤可以参考前面课程

3:拖入位置修正功能:这个非常重要,这里也不提了,可以参考上一篇笔记

4:拖入四边形查找模块

5:双击组件,开始设定参数

(1):首先得先画ROI: 这里还是比较方便的,工具直接生成了4个直线测量框,并且方向都标注好了,我们可以随意拖动到四个边缘位置即可

(2):然后开始设定参数:具体的参数其实是和之前的直线查找是一样的,因为底层算法其实还是拟合直线算法,相当于做了一个封装

1):边缘选择,边缘1/2/3/4,这里就是选择需要设定哪一条边缘的参数

2):边缘类型:最强:在边缘检测方向上查找梯度变化最大的边缘点,并将其拟合为直线。

第一条:查找边缘方向上寻找到的第一个点组合成点集合

最后一条:查找边缘方向上寻找到的最后一个点组合成点集合

3):边缘极性:从黑到白:就是梯度变化是黑色像素向白色像素过渡的边缘点

从白到黑:就是梯度变化是白色像素向黑色像素过渡的边缘点

任意:只要有梯度变化并且满足条件的点

4):边缘阈值:边缘梯度,只有实际的边缘梯度数值大于这个设定值,才会有效检测到边缘

5):卡尺数量:定义卡尺的数量,相当于每个卡尺检测一个点

6):滤波尺寸:设定边缘的清晰程度条件,边缘如果越清晰,这个数值就要减小

7):投影宽度:类似于ROI宽度,就是每一个小检测框的宽度,数值越大,可以相对获取更加稳定一点的坐标点

8):剔除点数,剔除距离:和剔除距离配合使用,允许坐标点到对应拟合直线的最大距离(像素)

9):初始拟合:局部:按照局部的特征点来拟合

全局:以查找到的全局特征点进行直线拟合。

10):拟合方式:提供了三个拟合算法,三种拟合算法权重的计算方式有些差异

四:实测:上述设定好参数,开始实际测量看看效果:这里就非常方便的只用了一个窗口,就把4个边缘位置都抓准了,自动计算出了中心坐标

相关推荐
百分百题库APP27 分钟前
江苏安全员 A 证 “安全生产管理” 核心考点
学习·考试·题库·考证
Coovally AI模型快速验证3 小时前
YOLOv8-SMOT:基于切片辅助训练与自适应运动关联的无人机视角小目标实时追踪框架
人工智能·深度学习·yolo·计算机视觉·目标跟踪·无人机
Aiah.4 小时前
数字图像处理(一)
开发语言·计算机视觉·matlab·数字图像处理
霜绛5 小时前
Unity笔记(六)——Mathf、三角函数、坐标系、向量
笔记·学习·unity·游戏引擎
long3166 小时前
代理设计模式
java·学习·程序人生·设计模式·代理模式
MThinker6 小时前
14.examples\01-Micropython-Basics\demo_yield.py 加强版
python·学习·智能硬件·micropython·canmv·k230
月盈缺6 小时前
学习嵌入式的第二十五天——哈希表和内核链表
学习·链表·散列表
好奇龙猫7 小时前
日语学习-日语知识点小记-构建基础-JLPT-N3阶段(19):文法复习+单词第7回1
学习
ts码农8 小时前
blazor 学习笔记--vscode debug
笔记·vscode·学习
牛奶yu茶8 小时前
Python学习笔记之(二)变量和简单的数据类型
笔记·python·学习