机器学习中的数学(PartⅡ)——线性代数:2.1线性方程组

概述:

现实中很多问题都可被建模为线性方程组问题,而线性代数为我们提供了解决这类问题的工具。先看两个例子:

例子1:

一家公司有n个产品,分别是,生产上述产品需要m种原料,每个产品需要其中一种或集中原料,假如生产1单位产品对应需要数量的原料,即生产1单位产品,需要数量原料加数量原料加......加数量原料。

现在希望找到一个最优生产方案,即如果现在已有每种原料的数量为,为了不剩下任何原料,每种产品应该生产多少数量

假如每种产品生产的数量分别为,则对于原料而言,我们需要的数量为:

确定最优生产方案就是确定每种产品生产的数量,因此需要满足以下线性方程组:

上述就是线性方程组地通用形式,表示方程组的未知量,每个满足上述方程组的n元组就是线性方程组的一个解。

我们使用表格更直观地表示上述关系:

|-----------------|--------|--------|-----|--------|
| 原料(数量) / 产品(数量) | N1(x1) | N2(x2) | ... | Nn(xn) |
| R1(b1) | a11 | a12 | ... | a1n |
| ... | ... | ... | ... | ... |
| Rm(bm) | am1 | am2 | ... | amn |

例子2:

上述线性方程组无解,因为前两个式子相加得到 ,这与第3个式子矛盾。

其他例子:

另外书中还提供了另外两个例子来说明无数解唯一解的情况,我就直接贴图了:

一般来说,一个实数线性方程组要么无解,要么无数解或唯一解。对于无解的情况,第九章线性回归提供了一个解决方案(等后续填坑)。

为了系统地求解线性方程组,使用一种有用的简明表示,对于第一个例子而言,将系数放进向量里,再把向量放进矩阵里:

接下来我们要做的就是研究这些矩阵并定义计算规则,这一部分将在2.2节介绍。

总结:

这部分内容比较简单,主要是通过例子展示了如何将一个现实生产问题建模为一个线性方程组,重点是掌握最后线性方程组的表示形式,即如何利用向量或者矩阵表示线性方程组。

相关推荐
程序猿阿伟21 分钟前
《重构工业运维链路:三大AI工具让设备故障“秒定位、少误判”》
运维·人工智能·重构
yueyuebaobaoxinx25 分钟前
聚焦技术落地,展现 AI 重构产业的实践路径。
人工智能·重构
算家云26 分钟前
Sora 2 的社交野心:AI 如何重构内容社交产品逻辑?
人工智能·openai·算家云·租算力,到算家云·sora 2·ai社交
飞哥数智坊1 小时前
Qwen3 Omni 的“全模态”,到底和多模态有啥不一样?
人工智能
文火冰糖的硅基工坊1 小时前
[光学原理与应用-480]:《国产检测设备对比表》
前端·人工智能·系统架构·制造·半导体·产业链
河南博为智能科技有限公司2 小时前
动力环境监控主机-全方位一体化监控解决方案
运维·服务器·人工智能·物联网·边缘计算
moshumu12 小时前
局域网访问Win11下的WSL中的jupyter notebook
ide·python·深度学习·神经网络·机器学习·jupyter
大饼酥2 小时前
吴恩达机器学习笔记(10)—支持向量机
机器学习·支持向量机·吴恩达·高斯核函数
北京耐用通信3 小时前
耐达讯自动化Modbus RTU转Profibus,让电磁阀连接从此与众不同!
网络·人工智能·网络协议·网络安全·自动化
芒果量化3 小时前
ML4T - 第7章第8节 利用LR预测股票价格走势Predicting stock price moves with Logistic Regression
算法·机器学习·线性回归