机器学习中的数学(PartⅡ)——线性代数:2.1线性方程组

概述:

现实中很多问题都可被建模为线性方程组问题,而线性代数为我们提供了解决这类问题的工具。先看两个例子:

例子1:

一家公司有n个产品,分别是,生产上述产品需要m种原料,每个产品需要其中一种或集中原料,假如生产1单位产品对应需要数量的原料,即生产1单位产品,需要数量原料加数量原料加......加数量原料。

现在希望找到一个最优生产方案,即如果现在已有每种原料的数量为,为了不剩下任何原料,每种产品应该生产多少数量

假如每种产品生产的数量分别为,则对于原料而言,我们需要的数量为:

确定最优生产方案就是确定每种产品生产的数量,因此需要满足以下线性方程组:

上述就是线性方程组地通用形式,表示方程组的未知量,每个满足上述方程组的n元组就是线性方程组的一个解。

我们使用表格更直观地表示上述关系:

|-----------------|--------|--------|-----|--------|
| 原料(数量) / 产品(数量) | N1(x1) | N2(x2) | ... | Nn(xn) |
| R1(b1) | a11 | a12 | ... | a1n |
| ... | ... | ... | ... | ... |
| Rm(bm) | am1 | am2 | ... | amn |

例子2:

上述线性方程组无解,因为前两个式子相加得到 ,这与第3个式子矛盾。

其他例子:

另外书中还提供了另外两个例子来说明无数解唯一解的情况,我就直接贴图了:

一般来说,一个实数线性方程组要么无解,要么无数解或唯一解。对于无解的情况,第九章线性回归提供了一个解决方案(等后续填坑)。

为了系统地求解线性方程组,使用一种有用的简明表示,对于第一个例子而言,将系数放进向量里,再把向量放进矩阵里:

接下来我们要做的就是研究这些矩阵并定义计算规则,这一部分将在2.2节介绍。

总结:

这部分内容比较简单,主要是通过例子展示了如何将一个现实生产问题建模为一个线性方程组,重点是掌握最后线性方程组的表示形式,即如何利用向量或者矩阵表示线性方程组。

相关推荐
GAOJ_K2 分钟前
滚珠螺杆的内循环与外循环有何差异?
人工智能·科技·机器人·自动化·制造
这张生成的图像能检测吗12 分钟前
(论文速读)Nickel and Diming Your GAN:通过知识蒸馏提高GAN效率的双重方法
人工智能·生成对抗网络·计算机视觉·知识蒸馏·图像生成·模型压缩技术
中国胖子风清扬23 分钟前
Spring AI Alibaba + Ollama 实战:基于本地 Qwen3 的 Spring Boot 大模型应用
java·人工智能·spring boot·后端·spring·spring cloud·ai
A7bert77728 分钟前
【YOLOv5seg部署RK3588】模型训练→转换RKNN→开发板部署
linux·c++·人工智能·深度学习·yolo·目标检测
不会计算机的g_c__b31 分钟前
AI Agent:从概念到实践,解析智能体的未来趋势与挑战
人工智能
serve the people1 小时前
tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制 2
人工智能·python·tensorflow
donkey_19931 小时前
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect
人工智能·深度学习·目标检测·计算机视觉·语义分割·实例分割
周名彥1 小时前
二十四芒星非硅基华夏原生AGI模型集群·全球发布声明(S∅-Omega级·纯念主权版)
人工智能·去中心化·知识图谱·量子计算·agi
周名彥1 小时前
1Ω1[特殊字符]⊗雙朕周名彥實際物理載體|二十四芒星物理集群载体群:超級數據中心·AGI·IPO·GUI·智能體工作流
人工智能·神经网络·知识图谱·量子计算·agi
Leinwin1 小时前
Microsoft 365 Copilot:更“懂你”的AI助手
人工智能·microsoft·copilot