机器学习中的数学(PartⅡ)——线性代数:2.1线性方程组

概述:

现实中很多问题都可被建模为线性方程组问题,而线性代数为我们提供了解决这类问题的工具。先看两个例子:

例子1:

一家公司有n个产品,分别是,生产上述产品需要m种原料,每个产品需要其中一种或集中原料,假如生产1单位产品对应需要数量的原料,即生产1单位产品,需要数量原料加数量原料加......加数量原料。

现在希望找到一个最优生产方案,即如果现在已有每种原料的数量为,为了不剩下任何原料,每种产品应该生产多少数量

假如每种产品生产的数量分别为,则对于原料而言,我们需要的数量为:

确定最优生产方案就是确定每种产品生产的数量,因此需要满足以下线性方程组:

上述就是线性方程组地通用形式,表示方程组的未知量,每个满足上述方程组的n元组就是线性方程组的一个解。

我们使用表格更直观地表示上述关系:

|-----------------|--------|--------|-----|--------|
| 原料(数量) / 产品(数量) | N1(x1) | N2(x2) | ... | Nn(xn) |
| R1(b1) | a11 | a12 | ... | a1n |
| ... | ... | ... | ... | ... |
| Rm(bm) | am1 | am2 | ... | amn |

例子2:

上述线性方程组无解,因为前两个式子相加得到 ,这与第3个式子矛盾。

其他例子:

另外书中还提供了另外两个例子来说明无数解唯一解的情况,我就直接贴图了:

一般来说,一个实数线性方程组要么无解,要么无数解或唯一解。对于无解的情况,第九章线性回归提供了一个解决方案(等后续填坑)。

为了系统地求解线性方程组,使用一种有用的简明表示,对于第一个例子而言,将系数放进向量里,再把向量放进矩阵里:

接下来我们要做的就是研究这些矩阵并定义计算规则,这一部分将在2.2节介绍。

总结:

这部分内容比较简单,主要是通过例子展示了如何将一个现实生产问题建模为一个线性方程组,重点是掌握最后线性方程组的表示形式,即如何利用向量或者矩阵表示线性方程组。

相关推荐
代码AI弗森30 分钟前
从 IDE 到 CLI:AI 编程代理工具全景与落地指南(附对比矩阵与脚本化示例)
ide·人工智能·矩阵
xchenhao2 小时前
SciKit-Learn 全面分析分类任务 breast_cancer 数据集
python·机器学习·分类·数据集·scikit-learn·svm
007tg3 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报4 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe994 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………5 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房5 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck6 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭7 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉