机器学习中的数学(PartⅡ)——线性代数:2.1线性方程组

概述:

现实中很多问题都可被建模为线性方程组问题,而线性代数为我们提供了解决这类问题的工具。先看两个例子:

例子1:

一家公司有n个产品,分别是,生产上述产品需要m种原料,每个产品需要其中一种或集中原料,假如生产1单位产品对应需要数量的原料,即生产1单位产品,需要数量原料加数量原料加......加数量原料。

现在希望找到一个最优生产方案,即如果现在已有每种原料的数量为,为了不剩下任何原料,每种产品应该生产多少数量

假如每种产品生产的数量分别为,则对于原料而言,我们需要的数量为:

确定最优生产方案就是确定每种产品生产的数量,因此需要满足以下线性方程组:

上述就是线性方程组地通用形式,表示方程组的未知量,每个满足上述方程组的n元组就是线性方程组的一个解。

我们使用表格更直观地表示上述关系:

|-----------------|--------|--------|-----|--------|
| 原料(数量) / 产品(数量) | N1(x1) | N2(x2) | ... | Nn(xn) |
| R1(b1) | a11 | a12 | ... | a1n |
| ... | ... | ... | ... | ... |
| Rm(bm) | am1 | am2 | ... | amn |

例子2:

上述线性方程组无解,因为前两个式子相加得到 ,这与第3个式子矛盾。

其他例子:

另外书中还提供了另外两个例子来说明无数解唯一解的情况,我就直接贴图了:

一般来说,一个实数线性方程组要么无解,要么无数解或唯一解。对于无解的情况,第九章线性回归提供了一个解决方案(等后续填坑)。

为了系统地求解线性方程组,使用一种有用的简明表示,对于第一个例子而言,将系数放进向量里,再把向量放进矩阵里:

接下来我们要做的就是研究这些矩阵并定义计算规则,这一部分将在2.2节介绍。

总结:

这部分内容比较简单,主要是通过例子展示了如何将一个现实生产问题建模为一个线性方程组,重点是掌握最后线性方程组的表示形式,即如何利用向量或者矩阵表示线性方程组。

相关推荐
在猴站学算法2 小时前
机器学习(西瓜书) 第二章 模型评估与选择
人工智能·机器学习
科技宅说3 小时前
36氪专访丨乐橙CEO谢运:AI科技下的业务创新与长期主义下的品牌坚守
人工智能·科技
学术小八4 小时前
2025年人工智能、虚拟现实与交互设计国际学术会议
人工智能·交互·vr
仗剑_走天涯5 小时前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec6 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl6 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji7 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头8 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域9 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊10 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor