机器学习中的数学(PartⅡ)——线性代数:2.1线性方程组

概述:

现实中很多问题都可被建模为线性方程组问题,而线性代数为我们提供了解决这类问题的工具。先看两个例子:

例子1:

一家公司有n个产品,分别是,生产上述产品需要m种原料,每个产品需要其中一种或集中原料,假如生产1单位产品对应需要数量的原料,即生产1单位产品,需要数量原料加数量原料加......加数量原料。

现在希望找到一个最优生产方案,即如果现在已有每种原料的数量为,为了不剩下任何原料,每种产品应该生产多少数量

假如每种产品生产的数量分别为,则对于原料而言,我们需要的数量为:

确定最优生产方案就是确定每种产品生产的数量,因此需要满足以下线性方程组:

上述就是线性方程组地通用形式,表示方程组的未知量,每个满足上述方程组的n元组就是线性方程组的一个解。

我们使用表格更直观地表示上述关系:

|-----------------|--------|--------|-----|--------|
| 原料(数量) / 产品(数量) | N1(x1) | N2(x2) | ... | Nn(xn) |
| R1(b1) | a11 | a12 | ... | a1n |
| ... | ... | ... | ... | ... |
| Rm(bm) | am1 | am2 | ... | amn |

例子2:

上述线性方程组无解,因为前两个式子相加得到 ,这与第3个式子矛盾。

其他例子:

另外书中还提供了另外两个例子来说明无数解唯一解的情况,我就直接贴图了:

一般来说,一个实数线性方程组要么无解,要么无数解或唯一解。对于无解的情况,第九章线性回归提供了一个解决方案(等后续填坑)。

为了系统地求解线性方程组,使用一种有用的简明表示,对于第一个例子而言,将系数放进向量里,再把向量放进矩阵里:

接下来我们要做的就是研究这些矩阵并定义计算规则,这一部分将在2.2节介绍。

总结:

这部分内容比较简单,主要是通过例子展示了如何将一个现实生产问题建模为一个线性方程组,重点是掌握最后线性方程组的表示形式,即如何利用向量或者矩阵表示线性方程组。

相关推荐
OAFD.5 小时前
机器学习之线性回归:原理、实现与实践
人工智能·机器学习·线性回归
SHIPKING3937 小时前
【机器学习&深度学习】LMDeploy的分布式推理实现
人工智能·深度学习
mit6.8247 小时前
[RestGPT] docs | RestBench评估 | 配置与环境
人工智能·python
CareyWYR8 小时前
每周AI论文速递(250818-250822)
人工智能
门思科技8 小时前
LoRaWAN 的网络拓扑全解析:架构、原理与应用实践
服务器·网络·人工智能·科技·物联网·架构
兔子的倔强8 小时前
Transformer在文本、图像和点云数据中的应用——经典工作梳理
人工智能·深度学习·transformer
lxmyzzs9 小时前
【图像算法 - 21】慧眼识虫:基于深度学习与OpenCV的农田害虫智能识别系统
人工智能·深度学习·opencv·算法·yolo·目标检测·计算机视觉
Gloria_niki9 小时前
机器学习之K 均值聚类算法
人工智能·机器学习
AI人工智能+9 小时前
表格识别技术:通过图像处理与深度学习,将非结构化表格转化为可编辑结构化数据,推动智能化发展
人工智能·深度学习·ocr·表格识别
深圳多奥智能一卡(码、脸)通系统9 小时前
智能二维码QR\刷IC卡\人脸AI识别梯控系统功能设计需基于模块化架构,整合物联网、生物识别、权限控制等技术,以下是多奥分层次的系统设计框架
人工智能·门禁·电梯门禁·二维码梯控·梯控·电梯