Named Entity Recognition with Bidirectional LSTM-CNNs(基于双向LSTM神经网络的命名实体识别)论文阅读

标题:Named Entity Recognition with Bidirectional LSTM-CNNs

(于双向LSTM神经网络的命名实体识别)

作者:Jason P .C. Chiu,Eric Nichols

单位: 哥伦比亚大学,本田研究所

发表期刊:CL

发表时间:2016年

论文研究主题归类:自然语言处理

1.论文解决什么问题

本文提出了提出了一种新的神经网络架构,这个架构可以通过使用双向LSTM和CNN的混合模型自动提取单词级和字符级的特征,避免了大量特征工程的工作。

提出了词汇表部分匹配算法,通过BIOES Annotation 去对词汇表中的单词前缀后缀进行匹配。通过引入使用公共资源构建的词汇表,本文的模型在CONLL-2003数据集上取得91.62的F1值,在OneNotes数据集上取得86.28的F1值。

2.是否有公开的数据集及源代码

数据集:CoNLL 2003 Dataset | Papers With Code

DBpedia Dataset | Papers With Code

https://paperswithcode.com/dataset/ontonotes-5-0

源代码:https://github.com/flairNLP/flair

3.论文的主要观点

作者认为命名实体识别是一项具有挑战性的任务,传统上需要特征工程和词典形式的大量知识才能实现高性能。为了处理变长序列,我们可以使用RNN模型,但是为了改变RNN无法提取长距离的依赖,衍生出了LSTM模型。一个双向的LSTM模型能够考虑单词两边的所有有用的信息。

相关推荐
CV-杨帆1 小时前
论文阅读:arxiv 2025 DeepSeek-R1 Thoughtology: Let‘s think about LLM Reasoning
论文阅读
点我头像干啥1 小时前
机器学习算法之动量法:优化梯度下降的“惯性”策略
人工智能·神经网络·算法·机器学习
2401_841495642 小时前
【自然语言处理】单字与双字字频统计算法设计
人工智能·python·算法·自然语言处理·单字·双字·字频统计
一水鉴天2 小时前
整体设计 定稿 之29 整体设计表述总表 的专用读表工具-自然语言处理(codybuddy)
人工智能·自然语言处理·重构
_codemonster3 小时前
自然语言处理容易混淆知识点(三)大模型中的参数
人工智能·自然语言处理
2401_841495643 小时前
【自然语言处理】字符编码与字频统计:中文信息处理的底层逻辑与实践维度
人工智能·自然语言处理·中文信息处理·西文字符编码的奠基·中文编码的演进·字符编码的实践价值·字频统计的作用与方法
QFIUNE3 小时前
【文献阅读】DP-Site:一种基于双重深度学习的蛋白质-肽相互作用位点预测方法
论文阅读
SACKings3 小时前
神经网络的层是什么?
人工智能·深度学习·神经网络
serve the people3 小时前
tensorflow 零基础吃透:TensorFlow 张量切片与数据插入(附目标检测 / NLP 实战场景)
目标检测·自然语言处理·tensorflow
roman_日积跬步-终至千里3 小时前
【计算机视觉(12)】神经网络与反向传播基础篇:从线性分类器到多层感知机
人工智能·神经网络·计算机视觉