Named Entity Recognition with Bidirectional LSTM-CNNs(基于双向LSTM神经网络的命名实体识别)论文阅读

标题:Named Entity Recognition with Bidirectional LSTM-CNNs

(于双向LSTM神经网络的命名实体识别)

作者:Jason P .C. Chiu,Eric Nichols

单位: 哥伦比亚大学,本田研究所

发表期刊:CL

发表时间:2016年

论文研究主题归类:自然语言处理

1.论文解决什么问题

本文提出了提出了一种新的神经网络架构,这个架构可以通过使用双向LSTM和CNN的混合模型自动提取单词级和字符级的特征,避免了大量特征工程的工作。

提出了词汇表部分匹配算法,通过BIOES Annotation 去对词汇表中的单词前缀后缀进行匹配。通过引入使用公共资源构建的词汇表,本文的模型在CONLL-2003数据集上取得91.62的F1值,在OneNotes数据集上取得86.28的F1值。

2.是否有公开的数据集及源代码

数据集:CoNLL 2003 Dataset | Papers With Code

DBpedia Dataset | Papers With Code

https://paperswithcode.com/dataset/ontonotes-5-0

源代码:https://github.com/flairNLP/flair

3.论文的主要观点

作者认为命名实体识别是一项具有挑战性的任务,传统上需要特征工程和词典形式的大量知识才能实现高性能。为了处理变长序列,我们可以使用RNN模型,但是为了改变RNN无法提取长距离的依赖,衍生出了LSTM模型。一个双向的LSTM模型能够考虑单词两边的所有有用的信息。

相关推荐
静听松涛1331 分钟前
中文PC端多人协作泳道图制作平台
大数据·论文阅读·人工智能·搜索引擎·架构·流程图·软件工程
AI大佬的小弟2 小时前
【小白第一课】大模型基础知识(1)---大模型到底是啥?
人工智能·自然语言处理·开源·大模型基础·大模型分类·什么是大模型·国内外主流大模型
柯南小海盗2 小时前
从“会聊天的AI”到“全能助手”:大语言模型科普
人工智能·语言模型·自然语言处理
学好statistics和DS2 小时前
卷积神经网络中的反向传播
人工智能·神经网络·cnn
ggaofeng2 小时前
运行调试大语言模型
人工智能·语言模型·自然语言处理
大模型任我行3 小时前
微软:小模型微调优化企业搜索
人工智能·语言模型·自然语言处理·论文笔记
极客小云6 小时前
【手搓神经网络:从零实现三层BP神经网络识别手写数字】
人工智能·深度学习·神经网络
墨北小七6 小时前
从记忆到创作:LSTM如何赋能智能小说生成
人工智能·rnn·lstm
智算菩萨7 小时前
【Python自然语言处理】实战项目:词向量表示完整实现指南
开发语言·python·自然语言处理
Blossom.1187 小时前
联邦迁移学习实战:在数据孤岛中构建个性化推荐模型
开发语言·人工智能·python·深度学习·神经网络·机器学习·迁移学习