Named Entity Recognition with Bidirectional LSTM-CNNs(基于双向LSTM神经网络的命名实体识别)论文阅读

标题:Named Entity Recognition with Bidirectional LSTM-CNNs

(于双向LSTM神经网络的命名实体识别)

作者:Jason P .C. Chiu,Eric Nichols

单位: 哥伦比亚大学,本田研究所

发表期刊:CL

发表时间:2016年

论文研究主题归类:自然语言处理

1.论文解决什么问题

本文提出了提出了一种新的神经网络架构,这个架构可以通过使用双向LSTM和CNN的混合模型自动提取单词级和字符级的特征,避免了大量特征工程的工作。

提出了词汇表部分匹配算法,通过BIOES Annotation 去对词汇表中的单词前缀后缀进行匹配。通过引入使用公共资源构建的词汇表,本文的模型在CONLL-2003数据集上取得91.62的F1值,在OneNotes数据集上取得86.28的F1值。

2.是否有公开的数据集及源代码

数据集:CoNLL 2003 Dataset | Papers With Code

DBpedia Dataset | Papers With Code

https://paperswithcode.com/dataset/ontonotes-5-0

源代码:https://github.com/flairNLP/flair

3.论文的主要观点

作者认为命名实体识别是一项具有挑战性的任务,传统上需要特征工程和词典形式的大量知识才能实现高性能。为了处理变长序列,我们可以使用RNN模型,但是为了改变RNN无法提取长距离的依赖,衍生出了LSTM模型。一个双向的LSTM模型能够考虑单词两边的所有有用的信息。

相关推荐
vlln13 小时前
【论文速读】递归语言模型 (Recursive Language Models): 将上下文作为环境的推理范式
人工智能·语言模型·自然语言处理
phoenix@Capricornus14 小时前
CNN中卷积输出尺寸的计算
人工智能·神经网络·cnn
~kiss~15 小时前
大模型中激活函数、前馈神经网络 (FFN) 的本质
人工智能·深度学习·神经网络
Keep_Trying_Go15 小时前
基于GAN的文生图算法详解ControlGAN(Controllable Text-to-Image Generation)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·文生图
番茄大王sc16 小时前
2026年科研AI工具深度测评:文献调研与综述生成领域
论文阅读·人工智能·学习方法·论文笔记
码界奇点18 小时前
基于Gin与GORM的若依后台管理系统设计与实现
论文阅读·go·毕业设计·gin·源代码管理
玄同76519 小时前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
阿杰学AI19 小时前
AI核心知识74——大语言模型之ReAct 范式(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·agent·react范式
DisonTangor20 小时前
美团龙猫开源LongCat-Flash-Lite
人工智能·语言模型·自然语言处理·开源·aigc
2501_948120151 天前
基于神经网络的音乐情感分析器
人工智能·深度学习·神经网络