spark-core编程2

  1. 常用聚合与获取数据算子
  • reduce:聚集RDD所有元素,先分区内聚合,再分区间聚合 ,如 rdd.reduce(+) 可对 RDD[Int] 类型数据求和。

  • collect:在驱动程序中以数组形式返回数据集所有元素。

  • foreach:分布式遍历RDD元素并调用指定函数 。

  • count:返回RDD中元素个数。

  • first:返回RDD的第一个元素。

  • take:返回RDD前n个元素组成的数组。

  • takeOrdered:返回RDD排序后的前n个元素组成的数组。

代码

结果

  1. 复杂聚合算子
  • aggregate:分区数据先与初始值聚合,再进行分区间聚合,可自定义聚合逻辑。

  • fold:是 aggregate 的简化版,按指定操作和初始值进行折叠操作。

代码

结果

  1. 特定功能算子
  • countByKey:统计 RDD[(K, V)] 中每种key的个数。

  • save相关算子:包括 saveAsTextFile 保存为文本文件、 saveAsObjectFile 保存为对象文件 、 saveAsSequenceFile (了解即可),用于将RDD数据保存为不同格式。

  1. 累加器:主要用于将Executor端变量信息聚合到Driver端。Driver程序定义变量后,Executor端每个Task都会有该变量副本,Task更新副本值后传回Driver端进行合并。文档通过简单示例展示了累加器的基本用法,还给出了自定义累加器实现wordcount的详细步骤,包括创建自定义累加器类,重写相关方法,以及在Spark程序中注册和调用自定义累加器。

代码

结果

  1. 广播变量:用于高效分发较大的只读对象到所有工作节点,供一个或多个Spark操作使用。以向所有节点发送较大只读查询表为例,说明了广播变量的应用场景。文档通过代码示例,展示了广播变量的使用过程,先创建广播变量,然后在RDD操作中使用广播变量的值,最终输出结果。
相关推荐
小陈永不服输6 小时前
Windows下RabbitMQ完整安装指南
windows·分布式·rabbitmq
青云交7 小时前
Java 大视界 -- Java 大数据在智能安防人脸识别系统中的活体检测与防伪技术应用
java·大数据·生成对抗网络·人脸识别·智能安防·防伪技术·活体测试
chenglin0168 小时前
ES_索引模板
大数据·elasticsearch·jenkins
byte轻骑兵10 小时前
大数据时代时序数据库选型指南:深度解析与 Apache IoTDB 实践
大数据·apache·时序数据库
NPE~11 小时前
[docker/大数据]Spark快速入门
大数据·分布式·docker·spark·教程
的小姐姐11 小时前
AI与IIOT如何重新定义设备维护系统?_璞华大数据Hawkeye平台
大数据·人工智能
TDengine (老段)12 小时前
TDengine IDMP 最佳实践
大数据·数据库·物联网·ai·时序数据库·tdengine·涛思数据
Java小混子13 小时前
【Redis】缓存和分布式锁
redis·分布式·缓存
彬彬醤13 小时前
Mac怎么连接VPS?可以参考这几种方法
大数据·运维·服务器·数据库·线性代数·macos·矩阵
星域智链13 小时前
车载 GPS 与手机导航的终极对决:谁在复杂路况下更胜一筹?
大数据·科技·ai