spark-core编程2

  1. 常用聚合与获取数据算子
  • reduce:聚集RDD所有元素,先分区内聚合,再分区间聚合 ,如 rdd.reduce(+) 可对 RDD[Int] 类型数据求和。

  • collect:在驱动程序中以数组形式返回数据集所有元素。

  • foreach:分布式遍历RDD元素并调用指定函数 。

  • count:返回RDD中元素个数。

  • first:返回RDD的第一个元素。

  • take:返回RDD前n个元素组成的数组。

  • takeOrdered:返回RDD排序后的前n个元素组成的数组。

代码

结果

  1. 复杂聚合算子
  • aggregate:分区数据先与初始值聚合,再进行分区间聚合,可自定义聚合逻辑。

  • fold:是 aggregate 的简化版,按指定操作和初始值进行折叠操作。

代码

结果

  1. 特定功能算子
  • countByKey:统计 RDD[(K, V)] 中每种key的个数。

  • save相关算子:包括 saveAsTextFile 保存为文本文件、 saveAsObjectFile 保存为对象文件 、 saveAsSequenceFile (了解即可),用于将RDD数据保存为不同格式。

  1. 累加器:主要用于将Executor端变量信息聚合到Driver端。Driver程序定义变量后,Executor端每个Task都会有该变量副本,Task更新副本值后传回Driver端进行合并。文档通过简单示例展示了累加器的基本用法,还给出了自定义累加器实现wordcount的详细步骤,包括创建自定义累加器类,重写相关方法,以及在Spark程序中注册和调用自定义累加器。

代码

结果

  1. 广播变量:用于高效分发较大的只读对象到所有工作节点,供一个或多个Spark操作使用。以向所有节点发送较大只读查询表为例,说明了广播变量的应用场景。文档通过代码示例,展示了广播变量的使用过程,先创建广播变量,然后在RDD操作中使用广播变量的值,最终输出结果。
相关推荐
呆呆小金人2 小时前
SQL字段对齐:性能优化与数据准确的关键
大数据·数据仓库·sql·数据库开发·etl·etl工程师
zskj_zhyl5 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
豆浆whisky6 小时前
Go分布式追踪实战:从理论到OpenTelemetry集成|Go语言进阶(15)
开发语言·分布式·golang
苗壮.6 小时前
「个人 Gitee 仓库」与「企业 Gitee 仓库」同步的几种常见方式
大数据·elasticsearch·gitee
驾数者6 小时前
Flink SQL入门指南:从零开始搭建流处理应用
大数据·sql·flink
乌恩大侠6 小时前
DGX Spark 恢复系统
大数据·分布式·spark
KM_锰6 小时前
flink开发遇到的问题
大数据·flink
happy_king_zi7 小时前
RabbitMQ Quorum 队列与classic队列关系
分布式·rabbitmq
labview_自动化9 小时前
RabbitMQ
分布式·rabbitmq·labview
人大博士的交易之路10 小时前
龙虎榜——20251106
大数据·数学建模·数据分析·缠论·缠中说禅·龙虎榜