requires_grad的三种写法以及区分

requires_grad的三种写法以及区分

第一种:

python 复制代码
x = torch.ones(2,2, requires_grad=True)

第二种:

python 复制代码
x = torch.ones(2,2)
x.requires_grad_=True

第三种:

python 复制代码
x = torch.ones(2,2)
x.requires_grad=True

这三种写法在功能上是等价的,它们都创建了一个形状为 (2 \times 2) 的张量 x,并设置了 requires_grad=True,这意味着 PyTorch 将会追踪对这个张量的所有操作以便未来可以计算梯度。不过,它们之间存在一些细微的差别,主要体现在代码的可读性和意图表达上。

第一种写法:x = torch.ones(2,2, requires_grad=True)

这种写法在创建张量时直接指定了 requires_grad=True。这种方式的优点是它清晰地表达了创建张量的意图,即这个张量是为了后续的梯度计算而创建的。这种写法在代码的可读性方面较好,因为它在张量创建时就明确了梯度追踪的需求。

第二种写法:x = torch.ones(2,2) 后跟 x.requires_grad_=True

这种写法首先创建了一个不需要梯度的张量 x,然后通过调用 .requires_grad_() 方法来设置 requires_grad 属性。这里使用的是 requires_grad_() 方法,它是一个就地操作(in-place operation),意味着它会直接修改调用它的张量,而不是创建一个新的张量。这种方式在某些情况下可以减少内存使用,因为它避免了创建额外的张量副本。

第三种写法:x = torch.ones(2,2) 后跟 x.requires_grad=True

这种写法与第二种写法类似,也是先创建一个不需要梯度的张量 x,然后设置 requires_grad=True。不过,这种方式不是就地操作,它会创建一个新的张量,并且这个新张量的 requires_grad 属性被设置为 True。这种方式在内存使用上可能不如第二种写法高效,因为它涉及到创建一个新的张量。

总结

  • 第一种写法 在代码的可读性方面最好,因为它在创建张量时就明确了梯度追踪的需求。
  • 第二种写法 是最推荐的写法,因为它通过就地操作来设置 requires_grad,避免了创建额外的张量副本,从而更高效。
  • 第三种写法 虽然功能上等价,但由于它不是就地操作,可能会涉及到额外的内存开销,因此在性能敏感的场景下不推荐使用。

在实际开发中,推荐使用第二种写法,因为它在表达意图和性能上都有很好的表现。

相关推荐
肖书婷14 分钟前
人工智能-机器学习day4
人工智能·机器学习
研梦非凡2 小时前
探索3D空间的视觉基础模型系列
人工智能·深度学习·神经网络·机器学习·计算机视觉·3d
Gerlat小智2 小时前
【手撕机器学习 04】手撕线性回归:从“蒙眼下山”彻底理解梯度下降
人工智能·机器学习·线性回归
学术小白人2 小时前
IEEE出版 | 2026年计算智能与机器学习国际学术会议(CIML 2026)
人工智能·机器学习
Psycho_MrZhang4 小时前
丢弃法-Dropout
人工智能·深度学习·机器学习
小李独爱秋5 小时前
【机器学习宝藏】深入解析经典人脸识别数据集:Olivetti Faces
人工智能·python·机器学习·计算机视觉·人脸识别·olivetti
eqwaak06 小时前
实战项目与工程化:端到端机器学习流程全解析
开发语言·人工智能·python·机器学习·语言模型
audyxiao0016 小时前
NeurIPS 2025论文分享|FedFree:突破知识共享壁垒的异构联邦学习新框架
大数据·人工智能·机器学习·大模型·智能体
AI数据皮皮侠8 小时前
全国各省市绿色金融指数及原始数据(1990-2022年)
大数据·人工智能·python·深度学习·机器学习·金融
zzywxc7878 小时前
AI行业应用全景:从金融风控到智能制造的落地实践与技术解析
人工智能·深度学习·spring·机器学习·prompt·制造