requires_grad的三种写法以及区分

requires_grad的三种写法以及区分

第一种:

python 复制代码
x = torch.ones(2,2, requires_grad=True)

第二种:

python 复制代码
x = torch.ones(2,2)
x.requires_grad_=True

第三种:

python 复制代码
x = torch.ones(2,2)
x.requires_grad=True

这三种写法在功能上是等价的,它们都创建了一个形状为 (2 \times 2) 的张量 x,并设置了 requires_grad=True,这意味着 PyTorch 将会追踪对这个张量的所有操作以便未来可以计算梯度。不过,它们之间存在一些细微的差别,主要体现在代码的可读性和意图表达上。

第一种写法:x = torch.ones(2,2, requires_grad=True)

这种写法在创建张量时直接指定了 requires_grad=True。这种方式的优点是它清晰地表达了创建张量的意图,即这个张量是为了后续的梯度计算而创建的。这种写法在代码的可读性方面较好,因为它在张量创建时就明确了梯度追踪的需求。

第二种写法:x = torch.ones(2,2) 后跟 x.requires_grad_=True

这种写法首先创建了一个不需要梯度的张量 x,然后通过调用 .requires_grad_() 方法来设置 requires_grad 属性。这里使用的是 requires_grad_() 方法,它是一个就地操作(in-place operation),意味着它会直接修改调用它的张量,而不是创建一个新的张量。这种方式在某些情况下可以减少内存使用,因为它避免了创建额外的张量副本。

第三种写法:x = torch.ones(2,2) 后跟 x.requires_grad=True

这种写法与第二种写法类似,也是先创建一个不需要梯度的张量 x,然后设置 requires_grad=True。不过,这种方式不是就地操作,它会创建一个新的张量,并且这个新张量的 requires_grad 属性被设置为 True。这种方式在内存使用上可能不如第二种写法高效,因为它涉及到创建一个新的张量。

总结

  • 第一种写法 在代码的可读性方面最好,因为它在创建张量时就明确了梯度追踪的需求。
  • 第二种写法 是最推荐的写法,因为它通过就地操作来设置 requires_grad,避免了创建额外的张量副本,从而更高效。
  • 第三种写法 虽然功能上等价,但由于它不是就地操作,可能会涉及到额外的内存开销,因此在性能敏感的场景下不推荐使用。

在实际开发中,推荐使用第二种写法,因为它在表达意图和性能上都有很好的表现。

相关推荐
信雪神话26 分钟前
DIVER技术解析:基于强化学习的扩散模型,如何破解端到端自动驾驶的“行为保守”难题?
人工智能·机器学习·自动驾驶
落羽的落羽37 分钟前
【C++】并查集的原理与使用
linux·服务器·c++·人工智能·深度学习·随机森林·机器学习
AI科技星14 小时前
质量定义方程常数k = 4π m_p的来源、推导与意义
服务器·数据结构·人工智能·科技·算法·机器学习·生活
smile_Iris15 小时前
Day 40 复习日
人工智能·深度学习·机器学习
火山kim15 小时前
经典论文研读报告:DAGGER (Dataset Aggregation)
人工智能·深度学习·机器学习
Coding茶水间15 小时前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
lisw0516 小时前
人工智能伦理与科技向善有何区别与联系?
人工智能·机器学习
JoannaJuanCV18 小时前
自动驾驶—CARLA仿真(25)synchronous_mode demo
人工智能·机器学习·自动驾驶·carla
鲨莎分不晴18 小时前
强化学习第七课 —— 策略网络设计指南:赋予 Agent“大脑”的艺术
网络·人工智能·机器学习
JoannaJuanCV19 小时前
自动驾驶—CARLA仿真(7)vehicle_physics demo
人工智能·机器学习·自动驾驶