requires_grad的三种写法以及区分

requires_grad的三种写法以及区分

第一种:

python 复制代码
x = torch.ones(2,2, requires_grad=True)

第二种:

python 复制代码
x = torch.ones(2,2)
x.requires_grad_=True

第三种:

python 复制代码
x = torch.ones(2,2)
x.requires_grad=True

这三种写法在功能上是等价的,它们都创建了一个形状为 (2 \times 2) 的张量 x,并设置了 requires_grad=True,这意味着 PyTorch 将会追踪对这个张量的所有操作以便未来可以计算梯度。不过,它们之间存在一些细微的差别,主要体现在代码的可读性和意图表达上。

第一种写法:x = torch.ones(2,2, requires_grad=True)

这种写法在创建张量时直接指定了 requires_grad=True。这种方式的优点是它清晰地表达了创建张量的意图,即这个张量是为了后续的梯度计算而创建的。这种写法在代码的可读性方面较好,因为它在张量创建时就明确了梯度追踪的需求。

第二种写法:x = torch.ones(2,2) 后跟 x.requires_grad_=True

这种写法首先创建了一个不需要梯度的张量 x,然后通过调用 .requires_grad_() 方法来设置 requires_grad 属性。这里使用的是 requires_grad_() 方法,它是一个就地操作(in-place operation),意味着它会直接修改调用它的张量,而不是创建一个新的张量。这种方式在某些情况下可以减少内存使用,因为它避免了创建额外的张量副本。

第三种写法:x = torch.ones(2,2) 后跟 x.requires_grad=True

这种写法与第二种写法类似,也是先创建一个不需要梯度的张量 x,然后设置 requires_grad=True。不过,这种方式不是就地操作,它会创建一个新的张量,并且这个新张量的 requires_grad 属性被设置为 True。这种方式在内存使用上可能不如第二种写法高效,因为它涉及到创建一个新的张量。

总结

  • 第一种写法 在代码的可读性方面最好,因为它在创建张量时就明确了梯度追踪的需求。
  • 第二种写法 是最推荐的写法,因为它通过就地操作来设置 requires_grad,避免了创建额外的张量副本,从而更高效。
  • 第三种写法 虽然功能上等价,但由于它不是就地操作,可能会涉及到额外的内存开销,因此在性能敏感的场景下不推荐使用。

在实际开发中,推荐使用第二种写法,因为它在表达意图和性能上都有很好的表现。

相关推荐
无风听海21 小时前
神经网络之密集的词向量如何能够代表稀疏的词向量
人工智能·神经网络·机器学习
淡漠的蓝精灵21 小时前
深度解析Weights & Biases:让AI实验管理变得如此简单
人工智能·其他·机器学习
音视频牛哥1 天前
低空经济的实时神经系统:空地一体化音视频架构的技术演进
机器学习·计算机视觉·音视频·低空经济·人工智能+·evtol·ai感知网络
Zyx20071 天前
用 JavaScript 打造 AI 大脑:前端开发者的新时代——基于 Brain.js 的浏览器端 NLP 实战
javascript·机器学习
Hs_QY_FX1 天前
幸福指数数据分析与预测:从数据预处理到模型构建完整案例
开发语言·python·机器学习
hrrrrb1 天前
【机器学习】监督学习
人工智能·学习·机器学习
长桥夜波1 天前
【第十九周】机器学习笔记08
人工智能·笔记·机器学习
深蓝岛1 天前
LSTM与CNN融合建模的创新技术路径
论文阅读·人工智能·深度学习·机器学习·lstm
lzptouch1 天前
蚁群(Ant Colony Optimization, ACO)算法
人工智能·算法·机器学习
Clain1 天前
Ollama、LM Studio只是模型工具,这款工具比他俩更全面
人工智能·机器学习·llm