基于YOLOV11的道路坑洼分析系统
【包含内容】 【一】项目提供完整源代码及详细注释 【二】系统设计思路与实现说明 【三】图形化界面与实时检测统计可视化功能
【技术栈】 ①:系统环境:Windows/MacOS/Linux多平台支持,推荐NVIDIA GPU加速 ②:开发环境:Python 3.8+,CUDA支持(可选但推荐) ③:技术栈:Ultralytics YOLOv11、PySide6、OpenCV、NumPy
【功能模块】 ①:图像检测模块:支持单张图片上传检测,自动标注坑洼位置及置信度 ②:视频检测模块:支持视频文件检测,实时标注并记录坑洼位置信息 ③:实时摄像头检测:连接摄像头进行实时坑洼检测,适用于车载系统 ④:数据统计分析:多维度统计检测结果,提供饼图、柱状图、趋势图可视化 ⑤:参数配置模块:支持调整置信度阈值,优化检测灵敏度与准确性
【系统特点】 ① 高效准确:基于先进的YOLOv11目标检测算法,检测速度快、准确性高 ② 多模式检测:支持图片、视频、实时摄像头三种输入模式,应用场景广泛 ③ 可视化统计:集成多种图表展示检测统计数据,直观了解坑洼分布情况 ④ 优雅界面:采用PySide6构建现代化GUI界面,操作流程简单直观
【核心技术】 ① 深度学习目标检测:使用YOLOv11模型,实现高效精准的坑洼识别 ② 多线程处理:采用QThread技术分离UI和检测线程,保障界面响应流畅 ③ 图形渲染与可视化:自定义绘图控件实现多种数据可视化展示 ④ 视频流实时处理:优化的OpenCV视频帧处理,支持实时检测与标注
【应用场景】 ① 道路养护管理:协助道路管理部门快速发现并记录需要修复的坑洼 ② 智能车载系统:安装在巡检车辆上进行实时道路状况监测 ③ 自动驾驶辅助:为自动驾驶系统提供前方路面状况信息,增强安全性 ④ 市政工程评估:评估道路质量,为城市基础设施维护提供数据支持
【拓展服务】 ① 部署+150:提供系统部署服务,包括环境配置、模型优化与系统调试 ② 如果有数据需要+100:提供针对特定道路环境的模型微调与优化服务


