Spark-SQL核心编程

MySQL

Spark SQL 可以通过 JDBC 从关系型数据库中读取数据的方式创建 DataFrame,通过对

DataFrame 一系列的计算后,还可以将数据再写回关系型数据库中。

IDEA通过JDBC对MySQL进行操作:

导入依赖

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

<version>5.1.27</version>

</dependency>

MySQL8 <version>8.0.11</version>

读取数据

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SQL")

val spark:SparkSession = SparkSession.builder().config(sparkConf).getOrCreate()

import spark.implicits._

//通用的load方式读取

spark.read.format("jdbc")

.option("url","jdbc:mysql://localhost:3306/system")

.option("driver","com.mysql.jdbc.Driver")//com.mysql.cj.jdbc.Driver

.option("user","root")

.option("password","123456")

.option("dbtable","user")

.load().show()

spark.stop()

//通用的load方法的另一种形式

spark.read.format("jdbc")

.options( Map("url"->"jdbc:mysql://localhost:3306/system?user=root&password=123456","dbtable"->"user","driver"->"com.mysql.jdbc.Driver"))

.load().show()

//通过JDBC

val pros :Properties = new Properties()

pros.setProperty("user","root")

pros.setProperty("password","123456")

val df :DataFrame = spark.read.jdbc("jdbc:mysql://localhost:3306/system","user",pros)

df.show()

写入数据

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SQL")

val spark:SparkSession = SparkSession.builder().config(sparkConf).getOrCreate()

import spark.implicits._

val rdd: RDD[Stu] = spark.sparkContext.makeRDD(List(Stu("lisi", 20),

Stu("zs", 30)))

val ds:Dataset[Stu] = rdd.toDS()

ds.write.format("jdbc")

.option("url","jdbc:mysql://localhost:3306/system")

.option("driver","com.mysql.jdbc.Driver")

.option("user","root")

.option("password","123456")

.option("dbtable","user2")

.mode(SaveMode.Append)

.save()

spark.stop()

Spark-SQL连接Hive

1)内嵌的 HIVE

如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可。但是在实际生产活动当中,几乎没有人去使用内嵌Hive这一模式。

2)外部的 HIVE

在虚拟机中下载以下配置文件:

如果想在spark-shell中连接外部已经部署好的 Hive,需要通过以下几个步骤:

➢ Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下,并将url中的localhost改为node01

➢ 把 MySQL 的驱动 copy 到 jars/目录下

➢ 把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下

➢ 重启 spark-shell

3)运行Spark-SQL CLI

Spark SQL CLI 可以很方便的在本地运行 Hive 元数据服务以及从命令行执行查询任务。在 Spark 目录下执行如下命令启动 Spark SQL CLI,直接执行 SQL 语句,类似于 Hive 窗口。

操作步骤:

将mysql的驱动放入jars/当中;

将hive-site.xml文件放入conf/当中;

运行bin/目录下的spark-sql.cmd 或者打开cmd,在

D:\spark\spark-3.0.0-bin-hadoop3.2\bin当中直接运行spark-sql

可以直接运行SQL语句,如下所示:

5)代码操作Hive

  1. 导入依赖。

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-hive_2.12</artifactId>

<version>3.0.0</version>

</dependency>

<dependency>

<groupId>org.apache.hive</groupId>

<artifactId>hive-exec</artifactId>

<version>2.3.3</version>

</dependency>

  1. 将hive-site.xml 文件拷贝到项目的 resources 目录中。

  2. 代码实现。

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("hive")

val spark:SparkSession = SparkSession.builder()

.enableHiveSupport()

.config(sparkConf)

.getOrCreate()

spark.sql("show databases").show()

spark.sql("create database spark_sql")

spark.sql("show databases").show()

spark

相关推荐
im_AMBER5 小时前
React 17
前端·javascript·笔记·学习·react.js·前端框架
报错小能手6 小时前
C++笔记——STL map
c++·笔记
lkbhua莱克瓦247 小时前
Java基础——集合进阶3
java·开发语言·笔记
QT 小鲜肉8 小时前
【QT/C++】Qt定时器QTimer类的实现方法详解(超详细)
开发语言·数据库·c++·笔记·qt·学习
MeowKnight9588 小时前
【Qt】Qt实践记录3——UDP通信
笔记·qt
REDcker8 小时前
前端打包工具 - Rollup 打包工具笔记
前端·笔记
lkbhua莱克瓦248 小时前
Java基础——集合进阶用到的数据结构知识点1
java·数据结构·笔记·github
进化中的码农9 小时前
Go中的泛型编程和reflect(反射)
开发语言·笔记·golang
存在morning9 小时前
【人工智能学习笔记 三】 AI教学之前端跨栈一:React整体分层架构
笔记·学习·架构
好望角雾眠10 小时前
第四阶段C#通讯开发-6:Socket之UDP
开发语言·笔记·学习·udp·c#